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Partial Wave Analysis done right.

PyPWA is a Python partial wave analysis package that utilizes Numpy, iminuit, and PyTables to
provide a high speed analysis framework that strives to help you get your work done without
getting in your way.

It’s a package that can be used either as a standalone program inside your terminal, or as Python
script or Jupyter Notebook, whatever your preference may be.

You can take a look at our code directly here

CONTENTS 1


https://github.com/JeffersonLab/PyPWA
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CHAPTER
ONE

ABOUT

The PyPWA Project aims to develop a software framework that can be used to perform parametric
model fitting to data. In particular, Partial Wave and Amplitude Analysis (PWA) of multiparticle
final states. PyPWA is designed for photoproduction experiments using linearly polarized photon
beams. The software makes use of the resources at the JLab Scientific Computer Center (Linux
farm). PyPWA extract model parameters from data by performing extended likelihood fits. Two
versions of the software are develop: one where general amplitudes (or any parametric model) can
be used in the fit and simulation of data, and a second where the framework starts with a specific
realization of the Isobar model, including extensions to Deck-type and baryon vertices corrections.

Tutorials (Step-by-step instructions) leading to a full fit of data and the use of simulation software
are included. Most of the code is in Python, but hybrid code (in Cython or Fortran) has been
used when appropriate. Scripting to make use of vectorization and parallel coprocessors (Xeon-Phi
and/or GPUs) are expected in the near future. The goal of this software framework is to create a
user friendly environment for the spectroscopic analysis of linear polarized photoproduction experi-
ments. The PyPWA Project software expects to be in a continue flow (of improvements!), therefore,
please check on the more recent software download version.

1.1 What can PyPWA do?

* Likelihood fitting with ChiSquared and Log Likelihood

* Simulation using the Monte-Carlo Rejection Sampling method

Multi-variable binning for 4 vector particle data (in GAMP Format)

* Convert and mask data between similar data types

Load data into an HDF5 dataset
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1.2

1.3

Further Reading

iMinuit
Nestle

PyTables (HDF5)

Team Members

Current PyPWA Team members

Dr. Carlos Salgado Norfolk State University
Dr. Will Phelps Christopher Newport University
Mark Jones VPCC and Old Dominion University

Dr. Peter Hurck University of Glasgow

Previous PyPWA Team members

Brandon DeMello Old Dominion University

Stephanie Bramlett William and Mary

Josh Pond Virginia Peninsula Community College (VPCC)
LaRay Hare Norfolk State University

Christopher Banks Norfolk State University

Michael Harris Jr Norfolk State University

High School Interns

Ryan Wright Hampton Governor’s School for Science and Technology

— Ran Amplitude benchmarks on the XeonPhi

1.4 Citations
* Roger Barlow. Extended maximum likelihood. Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,
297(3):496-506, 1990.
* Ph R BEVINGTON. Data reduction and error analysis for the physical sciences. Technical
Report, McGraw-Hill, 1969.
* Suh Urk Chung. Spin formalisms. Technical Report, CERN, 1971.
* WT Eadie, D Drijard, FE James, M Roos, and B Sadoulet. Statistical methods in experimental
physics, 2nd reprint. 1982.
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M Jacob and Gr C Wick. On the general theory of collisions for particles with spin. Annals of
Physics, 7(4):404-428, 1959.

* F James. Minuit reference manual, cern program library long writeup d506. James and M.
Winkler, MINUIT User’s Guide, CERN, 1994.

* Fred James, Matthias Winkler, and others. Minuit user’s guide. MIGRAD CERN, 2004.

* David JC MacKay and David JC Mac Kay. Information theory, inference and learning algo-
rithms. Cambridge university press, 2003.

* J Orear. Notes on statistics for physicists (1958). UCRL-8417, 1982.

* Carlos W Salgado and Dennis P Weygand. On the partial-wave analysis of mesonic reso-
nances decaying to multiparticle final states produced by polarized photons. Physics Reports,
537(1):1-58, 2014.

* K Schilling, P Seyboth, and G Wolf. On the analysis of vector-meson production by polarized
photons. Nuclear Physics B, 15(2):397-412, 1970.

* John Skilling. Nested sampling. In AIP Conference Proceedings, volume 735, 395-405. AIP,
2004.

* Charles Zemach. Use of angular-momentum tensors. Physical Review, 140(1B):B97, 1965.
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CHAPTER
TWO

INSTALLATION

PyPWA can be installed with pip or conda with Python 3.7 or newer

2.1 Conda

Thanks to tools provided by Anaconda, you can easily install PyPWA and all it’s dependencies with
a simple one line command. Check out Anaconda’s user guide if you're new to using Anaconda.

conda install -c markjonestx pypwa

If you want tools from PWA2000 (GAMP, HGAMP, VAMP, PPGEN) we’ve included them as well

Note: PWA2000 is currently only available on Linux installs of Anaconda.

conda install -c markjonesyx pwa2000

2.2 Pip

Warning: Pip can interfere with your system python. Make sure to never run pip as root, and
only perform local installs.

Fetch the latest version of PyPWA and install locally

Note: If you are using pip somewhere behind a firewall, you may need to pin pip’s servers using
pip install --trusted-host pypi.org --trusted-host pythonhosted.org

git clone --depth=1 https://github.com/JeffersonLab/PyPWA.git
cd PyPWA
pip install --local .



https://docs.anaconda.com/anaconda/user-guide/
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CHAPTER
THREE

CHANGELOG

All changes important to the user will be documented in this file.

The format is based on Keep a Changelog and this project adheres to Semantic Versioning

3.1 Unreleased

3.1.1 Added
3.1.2 Changed
3.1.3 Removed

3.1.4 Fixed

3.2 4.0.0 - 2022-10-11

3.2.1 Added

* Anaconda environments. There are two anaconda environments included inside the source
folder at the moment. anaconda-environment.yml and dev-environment.yml. These should
provide a nice starting point for anyone wanting to work on or with PyPWA. Pull requests are
welcomed if you think a package should be added to the base environment.

* Added PyTorch for GPU and Apple Metal support. Can be specified during install using pip
install pypwaltorch]. Amplitude support is specified by setting the USE_TORCH flag to True.

* Added support for Python’s Multithreading. You should only use this when computation
is happening on separate nodes and/or your optimizer choice does not support passing it’s
values across an OS Pipe.

* Added support for Minuit’s parameter array argument. Now amplitudes can be written to
accept a single array containing all the array values.

* Debugging support for amplitudes is now explicit. You can set the DEBUG flag to True on
your amplitude before simulation or fitting, and it’'ll run in the main process so traceback and
errors will not be suppressed.



http://keepachangelog.com/
http://semver.org/
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* Amplitudes can now know where they live. Amplitudes have a THREAD flag that is numbered

from O to N-threads that will specify which thread the amplitude is running in. This is useful if
you want to pair your processes/threads with external devices like GPUs or OpenMPI nodes.

3.2.2 Changed

* Data module will no longer bury the Cache object. The cache object will now reside in the

same directory as the parsed data.

Moves Emcee to an optional dependency so that PyPWA can function in a base anaconda
environment. If Emcee is installed, or if emcee is specified during installation using pip
install pypwalemcee], the emcee functionality will be usable.

iMinuit has changed their ABI entirely, so the iminuit function has been changed to adapt to
the new ABI.

Updated all dependencies around ReadTheDocs to avoid GitHub flagging the dependencies
for exploits.

3.2.3 Removed

Project manager. There were several bugs throughout the module, and as far as we are aware,
no users using the module. If you're affected by this change, please open an issue in the issue
tracker to let us know.

Removed the command line Binning utility. The Jupyter-based and internal binning utilities
remain unaffected. If this affects you, please open an issue.

Removed appdirs as a dependency.
Removed CuPy support, replaced by PyTorch.

Removed PyYaml Configuration support.

3.2.4 Fixed

* The bin by range function was not sampling data correctly. The intended behaviour was

for each bin to be sampled by N samples, and then those samples to be shuffled to add
randomization. However, because the shuffling was improperly implemented, what would
occur instead is a single random event would be dropped from the sample, and then returned.
This no longer occurs, and the returned bins will now be the correct length, and will be
correctly shuffled.

10
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3.3 3.4.0-2021-7-23

3.3.1 Added

* Peter’s emcee wrapper, available at PyPWA.mcmc

3.3.2 Changed
* System tests are now located in tests/system_tests
* PyMask will now return exit values on call

3.3.3 Removed

* PySimulate has been removed since it was limited in use, and it’s functionality has been
consumed by the PyPWA scripting libs.

3.4 3.3.0-2021-6-20

3.4.1 Added

* 2D Gauss introductory tutorial to the documentation

* CuPy support for Likelihoods and Simulation. This means we now officially support NVIDIA
GPU acceleration, however for now it is limited to a single GPU. If there is enough demand
for this to be expanded on, support for multiple GPUs will be added.

3.4.2 Changed

* Particle now requires a charge to be supplied during the creation of the object. GAMP has
also been modified to support the Charge being passed through to the Particle

* Depreciated internal options that were passed to Minuit have been replaced with the modern
alternatives.

3.5 Fixed

* Likelihoods were spawning multiple processes even when USE_MP was set to false. This has
been corrected, and will avoid spawning extra processes as it was intended.

3.3. 3.4.0-2021-7-23 11
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3.6 3.2.3-2021-6-11

3.6.1 Added

* Particle Pools can now compared against other Particle Pools to see if they are storing the
same content.

3.6.2 Fixed

* Regression from 3.2.0 where Gamp would not write out data to disk. This time by wrapping
the data in a float, which should catch instances where the value stored is a pure scalar, verses
instances where the data is an array with a len ==

3.7 3.2.2 - 2021-6-11

3.7.1 Fixed

* Particles can now be masked again, the mask is no longer silently deleted when passed to the
object.

* Numpy’s warning about numpy.float being deprecation should be resolved.

* Any warnings about the LaTeX in the Likelihood’s Docstrings being deprecated should be
resolved as well.

3.8 3.2.1-2021-6-10

3.8.1 Fixed

* Gamp no longer combines particles with the same ID

* Fixed issue where display raw would fail in Jupyter with Particles

3.9 3.2.0-2021-6-1

3.9.1 Added

* Vectors now support iPython and Jupyter Pretty printing

12 Chapter 3. Changelog
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3.9.2 Changed

* Vector sanitization function has improved handling of non-array inputs

3.9.3 Fixed

* FourVectors variable order is now in the correct order
* Vectors now work with inputs that aren’t arrays

* Patched issue with GAMP failing to write to file

3.10 3.1.0 - 2020-10-2

3.10.1 Added

* Helper functions pwa.pandas_to_numpy to convert Pandas data types to Numpy Structured
Arrays, and pwa.to_contiguous to convert DataFrames and Structured Arrays columns to
contiguous arrays for quicker processing and C/Fortran Support

* New experimental file format ParticleGZ, a direct-to-memory file format using pickle, csv, and
Tar/GZ to compress data into a single archive for easy use.

* Reference documentation to the Read The Docs for the various modules in PyPWA.

* Initial examples section added.

3.10.2 Changed

* Users now have to option to request structured Numpy arrays or Pandas DataFrames from
pwa.read and pwa.get_reader

* pwa.cache now defaults to intermediate caching, and has to be disabled for use with caching
files

* Vectors str and repr field now output the mean of their theta, phi, as well as particle id and
mass if they are available.

* Vectors now wrap individual numpy arrays instead of a single structured array or DataFrame.
This was done to improve performance of the vector as well as to make it C contiguous.

3.10. 3.1.0 - 2020-10-2 13
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3.10.3 Fixed

* pwa.write would fail to write CSV Numpy Arrays
* pwa.write would occasionally fail to detect DataFrames

* Vectors would occasionally replace their fields with just their x values.

3.11 3.0.0 - 2020-6-4

3.11.1 Added

ProjectDatabase has been added handle large data manipulation on disk instead of in mem-
Oory.

Reader/Writer now share path of the file being operated on.

Binning now works in both fixed count and ranges, and can be done entirely in memory.
Initial Jupyter and IPython support.

Adding lego plotting.

Likelihoods are now standalone objects that can be combined with any optimizer.

Resonance support now builtin using DataFrames as a backbone. Resonances are now saved
as a two sheet excel file, and can be modified using the supplied wave and resonance objects.

Adds support for Numexpr to accelerate computation.
Simulation can be done as two separate parts through PyPWA. simulate

Github Templates to help users and developers contribute to PyPWA

3.11.2 Changed

Separate release tag from version info
Package info is now stored in PyPWA.info
pydata has officially been updated to PyPWA 3.0.

Structured Arrays have been replaces for Pandas DataFrames in some cases. Vectors still based
on numpy arrays to maintain performance.

Reactions have been merged into ParticlePool.
Vectors have been simplified to be easier to test while still being powerful to use.
ProcessInterfaces now must be closed after use. This includes all Likelihood objects.

pwa.data has been refactored to be easier to be completely usable by itself.

14
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3.11.3 Removed

* SlotTable has been removed in favor of Project. Both use PyTables for the backend.

* Unsupported Python versions removed from package’s classifiers.

3.11.4 Fixed

* GAMP no longer claims that it can read PF files.
* Cache will correctly report invalid when it’s contents differ from the source file.

* monte_carlo_simulation and likelihoods now correctly handle exceptions that occur in the
child processes.

* Pipes are correctly closed now.
» Extended Log-likelihood is now correctly calculated
* Sv Writer will now write data.

e Kv Reader will now read data.

3.12 3.0.0a1 - 2019-6-17

3.12.1 Added

e Added numpy reader and writer.

* Adds a helper script to clean the project directory of caches.

* Adds initial documentation for PyPWA.

* Added support for 3 Vectors, 4 Vectors, and Particles

* Added ParticlePool to aid in working with multiple Particles

* Added a binning utility that supports multiple binning variables and dimensions

* Added PyTables support, so that large datasets can be easily managed

3.12.2 Changed

* All program names have been lowercased
* Configuration package has been compressed into a single module

* PySimulate now is a library that has no UI, and has a UI portion that exclusively works with
interfacing

* Fuzzywuzzy is now optional

* Process package is now a single module. Interface no longer uses IS_DUPLEX

3.12. 3.0.0a1 - 2019-6-17 15
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Bulk of program functionality moved to libs, progs being just for Ul

* Builtin Plugins moved to libs, old plugin’s plugins have still reside in plugins, but under a
package with the appropriate name. I.E. data plugins are in plugins/data.

* All file related libs have been moved to libs/file
* Combined optimizers with fit library
* GAMP was updated to use Particles and ParticlePool
* Files with extra newline should parse correctly now
* CSV and TSV files will be If instead of crlf on linux systems now
3.12.3 Removed
* Nestle Minimization. There is currently no clear way to have Minuit and Nestle to operate

with each other nicely. Implementation for multiple optimizers will remain, as well as new
associated issues created.

* Removed support for all version of Python before 3.7

3.13 2.2.1 - 2017-10-16

3.13.1 Fixed

* Setup would pull in unstable Yaml parser

3.14 2.2.0-2017-7-26

3.14.1 Added

* Process Plugin support for List Data

Adds Exception handling to Processes

PyMask support for multiple masking files.

PyFit will now filter out events if the Bin value is O

The user can AND, OR, or XOR masks together with PyMask

16 Chapter 3. Changelog
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3.14.2 Changed

* Removed previous_event from Process Interface

* Duplex Pipes are used over Simplex Pipes for Duplex Processes
* Changes get_file_length to using a binary buffered search.

* Moved PyPWA. core.shared to PyPWA.1libs

* Split interface’s plugins and internals to their own separate file based on the interfaces pur-
pose.

* PyFit no longer assumes bins are named 'BinN' you must specify Bin names in 'internal
data'.

» Multiplier effect for the Minimizers has been moved to the individual likelihoods.

* PyMask defaults to AND operations instead of OR now.

3.14.3 Fixed

* PyFit will now shutdown correctly when killed with Ctrl-C or other interrupt.
* The ChiSquared will no longer be multiplied by -1 when being minimized.

* Data Parser’s Cache would crash on very large files.

3.15 2.1.0-2017-6-30

3.15.1 Added
* Argument Parser for simple programs where a configuration file would be unneeded overhead
for the user.
* Numpy Data support for single arrays and pass fail files.
* Data Plugin now has two array types, Single Array and Columned Array
* Memory and Iterator objects now imported into PyPWA
* Iterators report length now

* Masking utility PyMask to mask and translate data

3.15. 2.1.0-2017-6-30 17
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3.15.2 Changed

* Plugin Loader now returns initialized objects

* Renamed shell to progs

* Moved all shell related items into a package called shell inside progs
* Renamed CHANGELOG.mg to CHANGELOG.md

* Renamed ‘blank shell module’ to ‘blank program module’

* Removed support for boolean and float arrays from EVIL Parser

* Renamed internal GAMP type to Tree type

Split flat data into Columned data and standard arrays

3.15.3 Fixed

* ChiSquare and Empty likelihoods are now actually usable

* setup.py would fail on setuptools versions < 20

3.16 2.0.0-2017-6-5

3.16.1 Added

* Plugin Subsystem

* Configurator Subsystem
* Data Plugin

* SV Plugin

* EVIL Plugin

* GAMP Plugin

* Data Caching

* Processing Plugin

* iMinuit plugin

* Nestle likelihood

* PyFit plugin

* Log Likelihood Plugin

* Chi-Squared Likelihood
* PySim plugin

18
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* Packaging

3.16. 2.0.0 - 2017-6-5 19
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[1]:

[2]:

CHAPTER
FOUR

INTRO TO PYPWA WITH THE 2D GAUSS

The goal with this little tutorial is to walk through how those PyPWA and its collective features.

Note: Multiproccessing is done automatically when it’s selected. However, if you have some direct
C/C++ code dependency in your Function on called in your class’s __init__, you will encounter
issues. This is why each object has a setup function- To initialize Fortran and C++ dependencies
there.

import numpy as np # Vectorization and arrays
import pandas as pd # A powerful data science toolkit
import numexpr as ne # A threaded accelerator for numpy

import PyPWA as pwa
from IPython.display import display

/home/mark/.anaconda3_install/envs/PyPWA/1lib/python3.10/site-packages/tqgdm/auto.py:
—22: TgdmWarning: IProgress not found. Please update jupyter and ipywidgets. See.
—https://ipywidgets.readthedocs.io/en/stable/user_install.html

from .autonotebook import tqdm as notebook_tqgdm

There are 3 different supported ways to define your kernel/amplitude in PyPWA. - Using multi-
processing: Write your kernel using Numpy and include any externally compiled code the setup
method. This is the default kernel, and will result in your kernel being deployed in parallel across
all threads on the host system. - Using Numexpr to use hardware threads and low level vector-
ization to further accelerate Numpy. There is some benefit to running Numexpr on less cores than
traditional Numpy, but largely you can treat Numexpr the same as the above. - Using Torch to
compute the Kernel. This will allow you to take advantage of Metal on Apple PCs, or CUDA GPUs
on Linux machines. However, to utilize CUDA, you must disable Multiprocessing. At this time,
CUDA does not support the main process being forked.

class Gauss2dAmplitude(pwa.NestedFunction):
This is a simple 2D Gauss, but built to use PyPWA's builtin
multiprocessing module. For you, you don't need to worry about thread or
process management, how to pass data between threads, or any of the other
hassles that come with multithreading.

(continues on next page)

21



PyPWA Documentation, Release Development

(continued from previous page)

Instead, you just define your class while extending the NestedFunction,
and when you pass it to the fitter or the simulator, it'll clone your
class, split your data, and deploy to every processing thread your
machine has.

nnn

def __init__(self):
You can override the init function if you need to set parameters
before the amplitude is passed to the likelihood or simulation
functions. You can see an example of this with the JPAC amplitude
included in the other tutorials. However, you must remember
to always call the ‘super® function if you do this.

nnn

super(Gauss2dAmplitude, self).__init__()

def setup(self, array):
This function is where your data is passes too. Here you can also
load any C or Fortran external libraries that typically would not
support being packaged in Python's object pickles.

nnn

self.__x = array[”"x"]
self.__y = array["y"]

def calculate(self, params):
This function receives the parameters from the minimizer, and
returns the values from there. Only the amplitude values should
be calculated here. The likelihood will be calculated elsewhere.
scaling = 1 / (params["A2"] * params["A4"])
left = ((self.__x - params["A1"1)**2)/(params["A2"]*%2)
right = ((self.__y - params["A3"])*x2)/(params["A4"]x*2)
return scaling * np.exp(-(left + right))

[3]: class NeGauss2dAmplitude(pwa.NestedFunction):

nnn

This is the same Gauss as above, but instead of using raw numpy, it
uses numexpr, a hyper vectorized, multithreading, numerical package that
should accelerate the calculation of your data.

USE_MP defaults to True, but you should consider setting it to false.
Numexpr will do some partial multithreading on its own for its
calculations, however any part of your algorithm that is defined outside

(continues on next page)
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(continued from previous page)

Numexpr will not benefit from Numexpr. Due to this, there is an optimum
number of threads for amplitudes with Numexpr that range from 2 threads
to around 80% of the system threads. A good starting point is around
50% of the CPU threads available.

nnn

USE_MP = False

def setup(self, array):
self.__data = array

def calculate(self, params):
return ne.evaluate(
"(1/(a2xad)) * exp(-((((x-al)xx2)/(a2**2))+(((y-a3)*x2)/(ad**2))))",
local_dict={
"al": params["A1"], "a2": params["A2"],
"a3": params["A3"], "a4": params["A4"],
"x": self.__data["x"]1, "y": self.__datal["y"]

[4]: import torch as tc

class TorchGauss2dAmplitude(pwa.NestedFunction):

nnn

Finally, this is the Torch version of the Gauss2D.

To utilize Torch, the USE_TORCH flag must be set to True, or the
likelihood will assume that the results will be in standard Numpy
arrays, and not Torch Tensors.

Torch affords us some features that Numpy does not. Specifically,
support for both Apple's Metal Acceleration, and CUDA Acceleration.
For Apple's Metal, there is no work required further than defining
your amplitude in Torch due to the shared memory on Apple systems.
To utilize CUDA, however, you must move the data to the GPU before
the GPU can accelerate the operations. Because of the nature of
CUDA, CUDA and Multiprocessing are not compatible, so you must
disable multiprocessing when using CUDA.

**WARNING** You *x*MUSTx* set USE_MP to False if you are using
CUDA as a Torch Device!

nnn

USE_TORCH = True

(continues on next page)
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(continued from previous page)

USE_MP = False

# device is not a flag for Amplitude, but we use it track the current
# device that the amplitude should run on.
device = ... # type: tc.device

def setup(self, array):
# We want to always set the current device. It also helps to be able
# to toggle GPU on and off for the entire amplitude using the USE_MP,
# flag since the flag can be set after initialization.
if self.USE_MP:
self.device = tc.device("cpu”)
else:
self.device

tc.device("cuda:0")

# Since the data is in Pandas, we need to map it to Numpy first
narray = pwa.pandas_to_numpy(array)

self.__x
self.__y

tc. from_numpy(narray[”x"]1).to(self.device)
tc. from_numpy(narray["y"]).to(self.device)

def calculate(self, params):
scaling = 1 / (params["A2"] * params["A4"])
left = ((self.__x - params["A1"]1)**2)/(params["A2"]*%2)
right = ((self.__y - params["A3"])*x2)/(params["A4"]**2)
return scaling * tc.exp(-(left + right))

4.1 Using caching for intermediate steps

PyPWA’s caching module supports caching intermediate steps. The advantage of using the caching
module is that saving and loading values is fast; much faster than almost any other solution, and
supports almost anything you can store in a variable.

PyPWA.cache has two functions in it, read and write. You can save almost anything in the cache:
lists, DataFrames, dictionary’s, etc. There is a chance that it won’t save the value if the data isn’t
serializable into a pickle, and it may not be compatible between different versions of python, so I
don’t recommend using this for data that you can’t reproduce. However, if you need to do some
feature engineering, or data sanitizing, before you can use the data in whatever way you need and
want to keep that data around to speed up future executions, this module will make your life a
touch easier.

Below, I created a large flat DataFrame, and then binned that DataFrame into 10 bins, each with
1,000,000 events in them. Then, I saved those results into a cache object that will appear in the
current working directory with the name “flat_data.intermediate”.

* pwa.read returns two values, the first is a boolean that is True only if it was able to read
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the pickle, and the second is the parsed data, which will be None if it was unable to parse
anything from the file, or the file doesn’t exist.

* pwa.write has no returns, but does write the data out in Pickle format to the provided file-
name + the “.intermediate” extension.

valid_cache, binned_flat = pwa.cache.read("flat_data")
if not valid_cache:
flat_data = pd.DataFrame()
flat_data["”"x"] = np.random.rand(10_000_000) * 20
flat_datal[”"y"] = np.random.rand(10_000_000) * 20
flat_data["binning”] = np.random.rand(10_000_000) * 20
binned_flat = pwa.bin_with_fixed_widths(flat_data, "binning"”, 1_000_000)
pwa.cache.write("flat_data"”, binned_flat)

4.2 Simulation with bins

Simulation can be run as a whole system, you simply provide the function and data, and it'll return
the masked values, or you can run the two steps independently, with the first step returning the
intensities, and the second returning the masks. When your working with a single dataset, running
it as a single step make sense, however if you bin your data, then running it as two steps is better
so that all bins are masked against the same max value of the intensity.

* pwa.simulate.process_user_function takes all the same arguments as pwa.
monte_carlo_simulation so it can be a drop in replacement. The difference is that
this function will return the final values for the user’s function and the max value.

* pwa.simulate.make_rejection_list takes the final values and either a single max value, or
a list or array of max values, and it'll use the largest max value. This function will return the
same value as pwa.monte_carlo_simulation

Below, I iterate over the bins and produce the final values and max value for each bin and store
them in their own lists.

simulation_params = {
"A1": 10, "A2": 3,
"A3": 10, "A4": 3

final_values = []
max_values = []
for fixed_bin in binned_flat:
final, m = pwa.simulate.process_user_function(
TorchGauss2dAmplitude(), fixed_bin, simulation_params
)
final_values.append(final)
max_values.append(m)

(continues on next page)
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(continued from previous page)

pwa.cache.write("”"final_values”, max_values)

After the final values have been produced, I use pwa.simulate.make_rejection_list to reject
events from each bin, and then store the new carved results in a fresh list.

rejected_bins = []

masked_final_values = []

for final_value, bin_data in zip(final_values, binned_flat):
rejection = pwa.simulate.make_rejection_list(final_value, max_values)
rejected_bins.append(bin_datalrejection])
masked_final_values.append(final_value[rejection])

pwa.cache.write("fitting_bins"”, rejected_bins, True)
pwa.cache.write("kept_final_values"”, masked_final_values, True)

for index, simulated_bin in enumerate(rejected_bins):
print(
f"Bin {index+1}'s length is {len(simulated_bin)}, "
f"{(len(simulated_bin) / 1_000_000) * 100:.2f}% events were kept”

)
Bin 1's length is 70589, 7.06% events were kept
Bin 2's length is 70544, 7.05% events were kept
Bin 3's length is 70621, 7.06% events were kept
Bin 4's length is 70608, 7.06% events were kept
Bin 5's length is 70532, 7.05% events were kept
Bin 6's length is 70369, 7.04% events were kept
Bin 7's length is 71019, 7.10% events were kept
Bin 8's length is 70542, 7.05% events were kept
Bin 9's length is 70533, 7.05% events were kept

Bin 10's length is 70633, 7.06% events were kept

4.3 How Caching is used by the Read and Write functions

If you want your data to be parsable by standard libraries, but still want to leverage the speed of
caching, you can use both, by default even! When the Cache Module is used by the Data Module,
it utilizes an additional feature that is tucked away when used by itself: File Hashing. The Cache
module can be told when it’s caching a specific file, so before the cache is created, it will parse the
source file to determine it’s SHA512 Sum, and then store that inside the cache. When the file is
loaded next, the saved SHA512 Sum is compared to the file’s current sum, and if they match the
cache is returned, otherwise the file is parsed again, and the cache is recreated.

After the below cell runs, you’ll see two new files created: first_bin.csv and first_bin.cache.
These two files will contain the same data, but if the CSV file is changed, even if just by a single
character, the file will be parsed again on the next call of pwa. read
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try:
first_bin = pwa.read("first_bin.csv")
except Exception:
first_bin = binned_flat[0]
pwa.write("first_bin.csv"”, binned_flat[0])

4.4 Fitting

While you can use PyPWA’s likelihoods with any minimizer, PyPWA supports Iminuit 2.X out of the
box. The first thing that is done is we set up the parameters to fit against, as well as the individual
names of each parameter.

Traditionally, iminuit works by reading the values from the provided function to guess what the
parameters are and what to pass to the function, however since we wrap the minimized function
to take advantage of GPU acceleration and multiprocessing, you must also tell iMinuit what the
values are directly.

fitting_settings = {
"AT" 1, "A2": 1,
"A3": 1, "A4": 1,

Then below, we can simply fit those values.

import multiprocessing as mp

# Even though we're using Numexpr, I do want to take advantage of both

# multiprocessing and Numexpr's low level optimizations. So by selecting
# a small number of processes with Numexpr, you still get an overall

# speedup over either Numexpr or regular multiprocessing
NeGauss2dAmplitude .USE_MP = True

cpu_final_values= []
for simulated_bin in rejected_bins:
with pwa.LoglLikelihood(
NeGauss2dAmplitude(), simulated_bin,
num_of_processes=int(mp.cpu_count() / 2)
) as likelihood:
optimizer = pwa.minuit(fitting_settings, likelihood)

for param in ["A1", "A3"]:
optimizer.limits[param] = (.1, None)

for param in ["A2", "A4"]:
optimizer.limits[param] = (1, None)

cpu_final_values.append(optimizer.migrad())
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gpu_final_values = []
for simulated_bin in rejected_bins:
with pwa.LoglLikelihood(TorchGauss2dAmplitude(), simulated_bin) as likelihood:
optimizer = pwa.minuit(fitting_settings, likelihood)

for param in ["A1", "A3"]:
optimizer.limits[param]

(.1, None)

for param in ["A2", "A4"]:
optimizer.limits[param] = (1, None)

gpu_final_values.append(optimizer.migrad())

4.5 A note about with

If you are new to Python, the with statement might be new to you. with allows you to create
objects that should be closed. Traditionally, you will see with used with files, but we use this with
Likelihoods. In the file case, when you leave the with block it will flush the buffers for you and
close the file’s handle. In the case of Likelihoods, when you leave the with block it will shut down
any associated threads, processes, and pipes that are associated with the created Likelihood.

Below is an example of how the Likelihood works without using the with statement.

for simulated_bin in rejected_bins:
likeihood = pwa.LoglLikelihood(TorchGauss2dAmplitude(), simulated_bin)
optimizer = pwa.minuit(fitting_settings, likelihood)

for param in ["A1", "A3"]:

optimizer.limits[param] (.1, None)

for param in ["A2", "A4"]:
optimizer.limits[param] = (1, None)

# You must remember to close the Likelihood when not using the 'with' block!
likeihood.close()

4.6 lIssues with PyPWA.cache

There are some values that can not be saved in a PyPWA’s cache. Typically, it’s an object from a
package that takes advantage of Cython or Fortran to accelerate its execution: either because the
values are stored as pointers to arrays, or uses C types too deep for Python’s interpreter to analyze.
A good example of this case is results from Iminuit.

As you can see below, a Runtime Warning is thrown from PyPWA’s caching module about how the
data can’t be saved. However, the real error is that the tuple has values that can not be converted
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to a pure Python object for pickling.

try:

pwa.cache.write("fitting_results”, cpu_final_values, True)
except RuntimeWarning as error:

print("Caught a cache error”)

print(f"{type(error)}: {error}")

Caught a cache error
<class 'RuntimeWarning'>: Your data can not be saved in cache!

4.7 Viewing the results

Finally, we can see what the results of the fitting. The result objects from iminuit are actually
Jupyter aware, so if you view a result from iminuit in Jupyter, the values will be responsive.

If you want to know what methods and parameters are available the result object returned by
iminuit, you should read through their (documentation) [https://iminuit.readthedocs.io/]

print(f"CPU bin 1")
cpu_final_values[0]

CPU bin 1
Migrad |
FCN = 2.259e+05 Nfcn = 231
EDM = 5.29e-07 (Goal: 0.0001)
Valid Minimum | No Parameters at limit |
Below EDM threshold (goal x 10) | Below call limit |
Covariance | Hesse ok | Accurate | Pos. def. | Not forced |
| | Name | Value | Hesse Err | Minos Err- | Minos Err+ | Limit- | Limit+ |u
—Fixed |
|
‘0|A1 | 10.005 | 0.008 | | | e | | -
S
| 1| A2 | 3.003 | o0.008 | | |1 | -
-
| 2| A3 | 9.995 | e.e08 | | | e.1 | | -
-
| 3| A4 | 3.006 | o0.008 | | |1 | -
-

(continues on next page)
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(continued from previous page)

Al A2 A3 A4

Al 6.39e-05 5.59e-08 8.65e-14 8.61e-14
A2 5.59e-08 6.39e-05 6.89e-14 -3.45e-13
A3 8.65e-14 6.89%-14 6.4e-05 5.57e-08
A4 8.61e-14 -3.45e-13 5.57e-08 6.4e-05

[16]: print(f"GPU bin 1")
display(gpu_final_values[0])

GPU bin 1
Migrad |
FCN = 2.259e+05 Nfcn = 231
EDM = 5.29e-07 (Goal: 0.0001)
Valid Minimum | No Parameters at limit |
Below EDM threshold (goal x 10) | Below call limit |
Covariance | Hesse ok | Accurate | Pos. def. | Not forced |
| | Name | Value | Hesse Err | Minos Err- | Minos Err+ | Limit- | Limit+ |u
—Fixed |
[
‘0|A1 | 10.005 | 0.008 | | | o1 | | -
o |
| 1| A2 | 3.003 | o0.008 | | |1 | -
| 2] A3 | 9.995 | 0.008 | | | e.1 | | -
| 3| A4 | 3006 | 0.008 | | |1 | -
S
[
‘ | A1 A2 A3 A4 |
Al 6.39e-05 5.59e-08 0 -0
A2 5.59e-08 6.39e-05 -0 Q
A3 0 -0 6.4e-05 5.57e-08

(continues on next page)
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(continued from previous page)

| A4 | -0 0 5.57e-08 6.4e-05
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CHAPTER
FIVE

SIMULATION TUTORIAL

import PyPWA as pwa

import numpy as npy

import pandas

import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore")

5.1 Define (import) amplitude (function) to simulate
The function will be use by the rejection method to “carve” a new distribution into the
input simulated data read in next lines.

#
import AmplitudeJPACsim
amp = AmplitudeJPACsim.NewAmplitude()

5.2 Read input (flat) simulated data (in condense format)

data = pwa.read("etapiHEL2_flat.txt")

Read data full (from gamp files)

datag = pwa.read(”../TUTORIAL_FILES/raw_events.gamp")

The format of the input data will depend on the Amplitudes: In this example the stan-
dard HEL angles, polarization angle (alpha) and other information neccesary are given
for PWA (see below)

data

EventN theta phi alpha pol tM mass
0 0.0 1.902160 3.800470 -1.074900 0.4 -0.026354 ©0.850234
(continues on next page)
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2w N =

9855141
9855142
9855143
9855144
9855145

[9855146

9855141.
9855142.
9855143.
9855144.
9855145.

2w N =

(SRR I RN

[SENSENSEESEESEE

—_ N =N =

- N = &

.916137
.811330
.000940
.871130

.354170
. 335000
.328470
.184290
.570570

rows x 7 columns]

N ool =

o N = w o

.660230
.778960
.250000
.697150

.931830
.347330
.948730
.491810
.590933

5.3 Produce simulation mask

A boolean file of (False and True)

rejection

.438370
.341440
.709120
.239302

.784408
.748025
.102880
.821200
.335300

(SRR R RN

(SIS NN

(continued from previous page)

-0.671785
-0.077582
-0.726730
-0.156830

B N

-0.054668
-0.844509
.138508
-0.314037
-0.240994

N O N N N
I
S

= pwa.monte_carlo_simulation(amp, data, dict(), 16)

2.
1.268280
1.

0.927206

O S T o JU S

619530

253960

.083350
.483240
.940464
.723398
.187410

Check on the waves and resonances that will be produced > This is a matrix with the
weigths of each wave on each resonance

amp.setup
table =[]
tabler=[]

(data)

for r in range(amp.resonance.resonance_index):
tabler.append(amp.resonance.Wo[r])
tabler.append(amp.resonance.Cr[rl])
for w in range(amp.resonance.wave_index):

tabler.append(amp.resonance.Wavelr][w])
table.append(tabler)

table

from tabulate import tabulate

r=[]

headers=["Resonance”, "Res-weight"]
for w in range(amp.resonance.wave_index):
headers. append(amp.resonance.wave_datal[w])

print(tabulate(table,headers))

Resonance Res-weight (1, 0, @ , 1, 9 a, 1, -n a, 1, 1 a,
- 2! 0) (1> 2; _1) (1; 2; 1) (17 2y _2) (1y 2) 2)
TTTTTT TTTToTTooToT ST ooo oo ooo—s mooommom—om— mmm e (continues on next page)
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0.98

1.306

—~ 0.33

1.584

1.722

-~ 0.33

.65

.35

.08

(SIS RN SIS EE S AN

0.33

0.33

S O OO0 OO0

Check on how many events will be kept through the masking

print(f"Removed {len(data) - npy.sum(rejection)

print(f"Kept

npy.sum(rejection)

events.")

(continued from previous page)

events from flat data.")

print(f"{(npy.sum(rejection) / len(data)) * 100}% of events remain.")

Removed 9454013 events from flat data.
Kept 401133 events.
4.070289775514234% of events remain.

5.4 Apply mask to input data

new_data will contain the simulated data in the same format that data/datag

new_data = datalrejection]

new_data

EventN theta
137 137.0 2.206940
171 171.0 1.775060
200 200.0 0.128817
205 205.0 0.696665
237 237.0 1.051710
9855028 9855028.0 ©0.858080
9855041 9855041.0 1.620860
9855064 9855064.0 0.734074
9855075 9855075.0 1.502800
9855113 9855113.0 1.324710
[401133 rows x 7 columns]
Mask full data format

new_datag = datagl[rejection]

S |G JE S

A= 0o N

phi
.953870
.264290
.396510
.981680
.753500

.779910
.822745
.887190
.512360
.971240

alpha

.247381
.600410
.063606
.079090
.496390

.051326
.592530
.768290
.860545
.140430

S0 © O T
A A DS~ D

(SIS G O N

NG O N O N

tM

.120428
.345176
.229984
.184068
.500240
.086823
.451578
.099859

.162814
.051079

_ AN =2

R G U | S )

mass

.995635
.167540
.269060
.885680
.334010
.981714
.311310
.098970

.710660
.154320

0

0.5

5.4. Apply mask to input data
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Write new_data into a Pandas Dateframe

[12]: amp.setup(new_data)
new_data = pandas.DataFrame(new_data)

5.5 Plot simulated data intensity versus mass

[13]: results = amp.calculate()
mni = npy.empty(len(new_data), dtype=[("mass"”, float), ("intensity"”, float)])
mni["mass”] = new_data["mass"]
mni["intensity”] = results.real
mni = pandas.DataFrame(mni)
counts, bin_edges = npy.histogram(mni["mass"], 200, weights=mni["intensity"])
centers = (bin_edges[:-1] + bin_edges[1:]) / 2

# Add yerr to argment list when we have errors
yerr = npy.empty(100)

yerr = npy.sqrt(counts)
plt.errorbar(centers,counts, yerr, fmt="0")
#plt.yscale("log")

plt.xlim(.6, 2.)

[13]: (0.6, 2.0)

2000
&
1750 - .
1500 - .
1250 -
. %
1000 . .
L ]
?5:]' [ .
| ° _—
500 . s
L ]
250 - * .
T T T T T T 1
06 08 10 12 14 15 18 20
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5.6 Calculate Phase difference between two waves

In this example first and 3erd waves in amplitude list

#if amp.Vs[1]15].all() !'= @ and amp.Vs[@][0].all() !'= 0:

phasediff = npy.arctan(npy.imag(amp.Vs[2][3]*amp.Vs[1]1[6].conjugate())/npy.real(amp.
<Vs[2][3]*amp.Vs[1][6].conjugate()))

#phasediff = npy.arctan(npy.imag(amp.Vs[2][1]*amp.Vs[1]1[2].conjugate())/npy.real(amp.
—Vs[2][1]xamp.Vs[11[2].conjugate()))

Plot PhaseMotion

mnip = npy.empty(len(new_data), dtype=[("mass"”, float), ("phase”, float)])
mnip[”mass”] = new_data["mass”]

mnip["phase”] = phasediff

mnip = pandas.DataFrame(mnip)

counts, bin_edges = npy.histogram(mnip["mass"], 100, weights=mnip["phase”])
centers = (bin_edges[:-1] + bin_edges[1:1) / 2

# Add yerr to argment list when we have errors
yerr = npy.empty(100)

yerr = npy.sqgrt(counts)
plt.errorbar(centers,counts, yerr, fmt="0")
plt.xlim(0.6, 2.)

[151: (0.6, 2.0)
®
®
. oaa®
5000 1 b .
® [
)
0] esesees® ..""'0.
. .ﬁ”..
o
-5000 A . o
. tgyue”
—10000 -
—15000 1 o*
®
06 I]I.IB 1.II:I 1.|2 1.I4 1_IE 1_|3 20
Plot phi_HEL vs cosHEL) of simulated data (with 4 different contracts(gamma))
[16]: import matplotlib.colors as mcolors
from numpy.random import multivariate_normal
gammas = [0.8, 0.5, 0.3]

(continues on next page)
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(continued from previous page)

fig, axes = plt.subplots(nrows=2, ncols=2)

axes[0, 0].set_title('Linear normalization')
axes[0, 0].hist2d(new_datal["phi”], npy.cos(new_datal["theta”]), bins=100)
#axes[0, 0].hist2d(cut_list["phi”], npy.cos(cut_list["theta"]), bins=100)

for ax, gamma in zip(axes.flat[1:], gammas):
ax.set_title(r'Power law $(\gamma=%1.1f)$"' % gamma)
ax.hist2d(new_datal["phi"], npy.cos(new_data["theta"]),
bins=100, norm=mcolors.PowerNorm(gamma))

fig.tight_layout()
plt.show()

Linear normalization Power law (y= 0.8)

05 0.5

0.0 0.0

-0.5 -0.5

2 4 G 2 4 &

Power law (y=0.5) Power law (y=0.3)

05 05

0.0 0.0

-0.5 -0.5

Plot cos(theta_HEL) vs mass for simulated data (with 4 different contrasts)

[17]: gammas = [0.8, 0.5, 0.3]

fig, axes = plt.subplots(nrows=2, ncols=2)

axes[0, 0].set_title('Linear normalization')
axes[0, 0].hist2d(new_datal["mass"”], npy.cos(new_data["theta"]),bins=100)

for ax, gamma in zip(axes.flat[1:], gammas):
ax.set_title(r'Power law $(\gamma=%1.1f)$" % gamma)
ax.hist2d(new_datal["mass"], npy.cos(new_datal["theta"]),
bins=100, norm=mcolors.PowerNorm(gamma))

(continues on next page)
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(continued from previous page)
fig.tight_layout()
plt.xlim(.6, 2.)
plt.show()

Linear normalization Power law (y= 0.8)

1 2 3 1 2 3

Power law (y=0.5) Power law (y=0.3)

1 2 3 10 15 20

Plot phiHEL vs mass for simulated data (with 4 different contrasts)

[18]: gammas = [0.8, 0.5, 0.3]
fig, axes = plt.subplots(nrows=2, ncols=2)

axes[0, 0].set_title('Linear normalization')
axes[0, 0].hist2d(new_data["mass”], new_datal["phi”],bins=100)

for ax, gamma in zip(axes.flat[1:], gammas):
ax.set_title(r'Power law $(\gamma=%1.1f)$"' % gamma)
ax.hist2d(new_data["mass”], new_datal"phi"],
bins=100, norm=mcolors.PowerNorm(gamma))

fig.tight_layout()
plt.xlim(.6, 2.)
plt.show()
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Linear normalization Power law (y=0.8)

10 15 20 25 30 10 15 20 25 30

Power law (y=0.5) Power law (y= 0.3)

10 15 20 25 30 073 100 125 150 175 200

Histogram of alpha/Phi > alpha/Phi is the polarization angle

[19]: plt.hist(new_data["alpha"],50)
plt.show()

10000 4

8000 -

G000 4

4000 4

2000

-3 -2 -1 o 1 2 3

Plot mass versus alpha/Phi

[20]: gammas = [0.8, 0.5, 0.3]
fig, axes = plt.subplots(nrows=2, ncols=2)

axes[0, 0].set_title('Linear normalization')
axes[0, 0].hist2d(new_datal["mass”], new_datal["alpha”],bins=100)

for ax, gamma in zip(axes.flat[1:], gammas):
ax.set_title(r'Power law $(\gamma=%1.1f)$"' % gamma)

(continues on next page)
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(continued from previous page)
ax.hist2d(new_data["mass”], new_datal["alpha"],
bins=100, norm=mcolors.PowerNorm(gamma))

fig.tight_layout()
plt.xlim(.6, 2.)
plt.show()

Linear normalization Power law (y=0.8)

1 2 3 1 2 3

Power law (y=0.5) Power law (y=0.3)

Plot phi_HEL versus alpha/Phi

[21]: gammas = [0.8, 0.5, 0.3]
fig, axes = plt.subplots(nrows=2, ncols=2)

axes[0, 0].set_title('Linear normalization')
axes[0, 0].hist2d(new_datal"phi”],new_data["alpha"],bins=100)

for ax, gamma in zip(axes.flat[1:], gammas):
ax.set_title(r'Power law $(\gamma=%1.1f) $' % gamma)
ax.hist2d(new_data["phi"], new_datal["alpha"],
bins=100, norm=mcolors.PowerNorm(gamma))

fig.tight_layout()

plt.show()
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Linear normalization Power law (y=0.8)

= ey e |

5.7 Write simulated data to disk

new_data.to_csv("”simdata_JPAC.csv", index=False)

Write gamp data after maked

pwa.write("raw_simulated_JPAC.gamp”,new_datag)

5.8 Calculate Moments (for JPAC or Std) and Asymmetries

H000,H010,H011,H020,H021,H022,H100,H110,H111,H120,H121,H122,sigma4,sigmay = amp.

—calculate_moments_JPAC()
#H0O ,H11,H10,H20,H21,H22 = amp.calculate_moments_STD()

Plot (all) Moments versus mass

plt.scatter(new_datal["mass"],H000, LABEL="H000")
plt.legend(loc="upper right")
plt.scatter(new_datal"mass"”],H010,LABEL="H010")
plt.legend(loc="upper right")
plt.scatter(new_datal["mass”],H@11,LABEL="HO11")
plt.legend(loc="upper right')
plt.scatter(new_datal["mass”],H020,LABEL="H020")
plt.legend(loc="upper right')
plt.scatter(new_datal["mass”],H021,LABEL="H021")
plt.legend(loc="upper right')

(continues on next page)
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(continued from previous page)

plt.scatter(new_datal"mass"”],H022,LABEL="H022")

plt.legend(loc="upper right')

plt.scatter(new_datal"mass”],H100,LABEL="H100")

plt.legend(loc="upper right')

plt.scatter(new_datal"mass”],H110,LABEL="H110")

plt.legend(loc="upper right')

plt.scatter(new_datal"mass”],H111,LABEL="H111")

plt.legend(loc="upper right")

plt.scatter(new_datal"mass"”],H120,LABEL="H120")

plt.legend(loc="upper right')

plt.scatter(new_datal["mass”],H121,LABEL="H121")

plt.legend(loc="upper right')

plt.scatter(new_datal["mass"”],H122,LABEL="H122")

plt.legend(loc="upper right')
plt.x1lim(0.6, 2.)

[26]: (0.6, 2.0)

144 e HOOD
e HOLD
121 e HOL1
10 e HO2D
s HO21
08 - e HO22
e HIOD
0.6 4 ® HI11D
HI11
0.4 7 e HIZD
02 - e HIZL
[ ]
0.0
T T T T T T
0.6 0.8 10 12 14 16 18 20

PLot each moment vs mass

[27]: plt.x1im(@.6, 2.)

plt.scatter(new_datal"mass"”],H000,LABEL="H000")
plt.scatter(new_datal["mass”],H100,LABEL="H100")

plt.legend(loc="upper right")
plt.show()
plt.x1im(@.6, 2.)

plt.scatter(new_datal["mass”],H010,LABEL="H010")
plt.scatter(new_datal["mass”]1,H110,LABEL="H110")

plt.legend(loc="upper right')
plt.show()
plt.x1im(@.6, 2.)

plt.scatter(new_datal["”mass”],H011,LABEL="H011")

(continues on next page)
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(continued from previous page)

plt.scatter(new_datal["mass”],H111,LABEL="H111")
plt.legend(loc="upper right')
plt.show()
plt.x1lim(0.6, 2.)
plt.scatter(new_datal"mass"”],H020,LABEL="H020")
plt.scatter(new_datal["mass"],H120,LABEL="H120")
plt.legend(loc="upper right")
plt.show()
plt.x1im(@.6, 2.)
plt.scatter(new_datal["mass”],H021,LABEL="H021")
plt.scatter(new_datal["mass”],H121,LABEL="H121")
plt.legend(loc="upper right')
plt.show()
plt.x1im(0.6, 2.)
plt.scatter(new_datal["mass"],H022,LABEL="H022")
plt.scatter(new_datal"mass”],H122,LABEL="H122")
plt.legend(loc="upper right')
plt.show()

14 4 @& HOOOD

& H100

124

14 4

0.8 1

0.6 1

0.4 1

0.2 4

0.0 1

06 I].IE ]_I{I ]_|2 ]_|4 ]_IE ]_IE 2.I{I
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0175
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0150 1

0125 A

0100

0075

0050 4

0025

0000
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0o 0.3 10 12 14 la 15 20
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0.08 1 @ H111

006

004 4

002 A

000 A

—0.02 A
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0150 1 e HOZ1
» HIZ1
0125 A
0100
0075 A
0050 4
0025 A
0000 1

—0.025 1

0o 0.3 10 12 14 la 15 20

e HO22
0.04 1 e Hl122

002 A
000
—0.02 A
—0.04 A
—0.06 1

—0.08 A

—0.10 A
e 0a 10 1z 14 16 18 20

Plot asymmetry Sigma_4PI

[28]: plt.x1lim(0.6, 2.)
plt.scatter(new_datal["mass"],sigma4,LABEL="sigma4pi")
plt.legend(loc="upper right")
plt.show()
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10
& sigmadpi
0.9 -
0.8 -
0.7 1
0.6 -

05

04

06 03 10 1z 14 16 148 20

Plot asymmetry Sigma_y

[29]: plt.x1lim(0.6, 2.)
plt.scatter(new_datal["mass”],sigmay,LABEL="sigmay")
plt.legend(loc="upper right")

[29]: <matplotlib.legend.Legend at 0x7f0c54a93390>

1001 & sigmay
075 1
050 4
025 A
000 1

—0.25 1

—0.50 1

—0.75 A

=1.00 A
0.6 0.8 10 12 14 16 18 20

L 1:
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CHAPTER
SIX

FITTING TUTORIAL

[1]: import PyPWA as pwa
import pandas
import numpy as npy
from IPython.display import display
import warnings
warnings.filterwarnings('ignore")

Define Waves for Fit (and input initial values of minuit and fitted parameters).* >In
this example (as expected by the defined amplitude) >each wave is defined by (ep-
silon..m) and each parameter has a real and imaginary part. >i.e a epsilon=-
1, 1=1 (P wave), m=1 will produce Vs(r.-1.1.1) and Vs(i.-1.1.1) names. >(In this
example the imaginary part of the P-wave is kept fixed at O value >in the fit)

[2]: Vs = {"errordef"”: 1}

initial = []

for param_type in ["r", "i"]:
initial.append(f"{param_type}.1.0.0")
initial.append(f"{param_type}.1.1.0")
initial.append(f"{param_type}.1.1.1")
initial.append(f"{param_type}.1.2.0")
initial.append(f"{param_type}.1.2.1")
initial.append(f"{param_type}.1.2.2")

# initial.append(f"{param_type}.1.3.1")

# initial.append(f"{param_type}.1.4.1")
Vs[f"{param_type}.1.0.0"] = 10
Vs[f"limit_{param_type}.1.0.0"] = [-500, 1500.]

Vs[f"error_{param_type}.1.0.0"] = .1
# Vs[f"fix_i.-1.0.0"] = True

Vs[f"{param_type}.1.1.0"] = 10
Vs[f"limit_{param_type}.1.1.0"] = [-500, 1500.]
Vs[f"error_{param_type}.1.1.0"] = .1

(continues on next page)
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Vs[f"{param_type}.1.1.1"]
Vs[f"limit_{param_type}.1.
Vs[f"error_{param_type}.1.
Vs[f"fix_i.1.1.1"] = True

[-500, 1500.]

—_ ]
_

Vs[f"{param_type}.1.2.0"]
Vs[f"limit_{param_type}.1.
Vs[f"error_{param_type}.1.

[-500, 1500.]

NN
(S

Vs[f"{param_type}.1.2.1"]
Vs[f"limit_{param_type}.1.
Vs[f"error_{param_type}.1.

= [-500, 1500.]

NN
—_

Vs[f"{param_type}.1.2.2"]
Vs[f"limit_{param_type}.1.
Vs[f"error_{param_type}.1.

= [-500, 1500.]

NN
NN =

# Vs[f"{param_type}.1.3.1"]
Vs[f"limit_{param_type}.1.
# Vs[f"error_{param_type}.1.

+H

[-500, 1500.]
A

w w |l

L4

L3 L
1

# Vs[f"{param_type}.1.4.1"]
Vs[f"limit_{param_type}.1.
# Vs[f"error_{param_type}.1.

E=3

= [-500, 1500.]
= .1

A~ K

- L4

I_II_~I
I

Vs[f"i.1.1.1"]1 = 0.1

(continued from previous page)

6.1 Read data and montecarlos (accepted and generated) samples

datasample = pandas.read_csv("simdata_JPAC-np.csv")
#accmcsample = pandas.read_csv(”simdata5.csv")
#rawmcsample = pandas.read_csv(”simdata5.csv")
#datasample = pwa.read("etapi_data_data.txt")
#accmcsample = pwa.read(”etapi_acc.txt”)

accmcsample = pwa.read(”../TUTORIAL_FILES/etapi_acc.txt")
rawmcsample = pwa.read("”../TUTORIAL_FILES/etapi_raw.txt")
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[5]:
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6.2 Binning of the data/monte-carlo and define amplitude (function) to fit*
> Here the user difine number of bins, variable to be binned and range

#import AmplitudeOLDfit

#amplitude = AmplitudeOLDfit.FitAmplitude(initial)

import AmplitudeJPACfit

amplitude = AmplitudeJPACfit.FitAmplitude(initial)

#Define number of bins

nbins = 20

binsda = pwa.bin_by_range(datasample, "mass”, nbins, .6, 2.0)

binsma = pwa.bin_by_range(accmcsample, accmcsample[”mass”], nbins, .6, 2.0)
binsmr = pwa.bin_by_range(rawmcsample, rawmcsample[”mass”], nbins, .6, 2.0)

Check that bins have enough number of events for fit

for bin in binsda:
print(len(bin))

6577
9364
16674
45953
127024
48129
21406
23014
41661
58948
20078
5179
3404
5434
11026
18505
19504
13486
8425
5481

6.2. Binning of the data/monte-carlo and define amplitude (function) to fit* > Here the user 51
difine number of bins, variable to be binned and range
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6.3 Fitting with Minuit and Extended LogLikelihood

Look at other possibilities through pypwa (use the ?pwa command
or see https://pypwa.jlab.org or https://github.com/JeffersonLab/PyPWA)

[6]: from IPython.display import display
intensities = []
for the_bin in binsda:
# amp = AmplitudeJPACfit.FitAmplitude(initial)
amplitude.setup(the_bin)
# intensities.append(amplitude.calculate(Vs))
display(pandas.DataFrame(amplitude.calculate(Vs)))

0
0 524.818443
1 112.544543
2 75.976211
3 64.049006
4 143.808291

6572  105.370331
6573 78.846342
6574 120.701116
6575 1477.089631
6576  123.955803

[6577 rows x 1 columns]

0
0 86.996618
1 447.912162
2 161.396588
3 759.107477
4 471.011055

9359 161.296093
9360 68.394902
9361 120.358836
9362 146.710380
9363 1196.737830

[9364 rows x 1 columns]

0
0 102.392089
1 595.649766
2 65.344248
3 280.705037

(continues on next page)
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4
16669
16670
16671

16672
16673

[16674

A wWN =

45948
45949
45950
45951
45952

[45953

A wWN =,

127019
127020
127021
127022
127023

602.

67.

124
301

456.
28.

row

29.

710

10.
945.
206.

179

row

1

1
10

1

855631

959747
.2977717
.015157
641653
929693

s x 1 columns]

0
.379040
951455
.905595
.029131
.321421

878720
802674
911768
.314430
.352145

s x 1 columns]

0

45.201774
43.788671

68.660084
9.205558
14.399723

26.680693
49.419573
51.796865
57.035089
38.986098

[127024 rows x 1 columns]

A wWN -2

274
35
522
92
33

0
.367106
.553065
.821937
.515519
.446217

(continued from previous page)

(continues on next page)
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48124
48125
48126
48127
48128

25.
75.
48.
293.
421.

919379
859785
402383
509456
146119

[48129 rows x 1 columns]

AW N =

21401
21402
21403
21404
21405

45.
15.
21
14
344.

59.
13.
128.
176.
245.

0
795303
878769

.845367
.488416

731653

818207
964827
051507
612802
816445

[21406 rows x 1 columns]

A wWN =

23009
23010
23011
23012
23013

118

67.
27.
112.
67.

20.
1213.
53.
99.
97.

[23014 rows

0
.713985
395399
073464
184943
211745

237335
036052
378732
544672
962964

x 1 columns]

(continued from previous page)

7]
Q 148.878988
1 88.325662
2 53.639603
3 58.828367
4 1037.404460
41656 507.615053
41657 317.901180
(continues on next page)
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(continued from previous page)

41658 30.504177
41659 62.302882
41660  728.571526

[41661 rows x 1 columns]

0
0 110.002848
1 100.119518
2 35.670939
3 104.887662
4 73.708474

58943 135.970979
58944  99.755129
58945 155.988587
58946  80.796297
58947 116.174652

[58948 rows x 1 columns]

0
0 18.156982
1 770.564549
2 120.300152
3 62.457731
4 65.750478

20073  84.231031
20074 914.184940
20075 60.042079
20076 412.368861
20077  19.055842

[20078 rows x 1 columns]

0
0 398.611511
1 55.839262
2 77.243593
3 1304.790980
4 72.391068

5174 36.506975
5175 1115.010985
5176 143.689987
5177 48.646845
(continues on next page)
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5178

[5179

AN O

3399
3400
3401
3402
3403

[3404

AN O

5429
5430
5431
5432
5433

[5434

AN O

11021
11022
11023
11024
11025

464

rows

60.
34.
135.

1201

60.

1428

1399.
66.
98.
73.

rows

103.
113.
105.
956.

37.

109.
245.
89.
46.
68.

rows

11
6
10
1
86

4
110
12
62
10

.702500

x 1 columns]

0
668913
574231
356656
.104334
986209

.391920
261054
499178
375089
720043

x 1 columns]

0
818553
029484
535405
658340
009373

659727
627433
075206
218475
453003

x 1 columns]

0
7.917716
0.368189
6.026393
8.873867
7.596778

9.616098
8.300986
1.330039
5.404605
3.814676

[11026 rows x 1 columns]

(continued from previous page)
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18500
18501
18502
18503
18504

(18505

AN O

19499
19500
19501
19502
19503

[19504

A wWN =

13481
13482
13483
13484
13485

[13486

1110

345.
39.
99.
75.

529

119.
106.
276.
538.

rows

68.
39.
60.
50.
64.

77
129.
106.

77.

35.

rows

339.
122.
634.
151

95.

720
235.
729.
48.
92.

rows

171.
540.

0
.502242
911006
504982
835906
525220

.065292
301695
702676
974839
951930

x 1 columns]

0
286312
953749
416889
038970
739444

.684112

915471
508003
068989
953535

x 1 columns]

0
181092
302602
641964

.480484

661702

.673161

111937
677239
733459
768180

x 1 columns]

0
258809
359474

(continues on next page)
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w

8420
8421
8422
8423
8424

[842

A wWN -2

5476
5477
5478
5479
5480

[548

resu
for

—Li

Look

fail
for

73.843787
70.820574
55.000461

177.519620
435.200540
1199.026642
1107.307499
118.770827

5 rows x 1 columns]

0
83.857029
114.315472
208.307961
188.421035
17.385281

697.596041
94.189151
114.175654
71.607560
60.128946

1 rows x 1 columns]

1ts = []
index, dbin in enumerate(binsda):
with pwa.Loglikelihood(

(continued from previous page)

amplitude, dbin, binsmal[index], generated_length=len(binsmr[index])) as.

kelihood:
results.append(

pwa.minuit(initial, Vs, Likelihood, 1, 2, 2000)

)

ing at the results of fitting

ed = 0
index, result in enumerate(results):
display(f"Bin #{index}:")
display(result.get_fmin())
try:
display(result.get_param_states())
except:
failed += 1

(continues on next page)
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(continued from previous page)

pass

display(f"{(failed / len(results)) * 100}% ({failed})Failed. ")

'Bin #0:'

L FON = 543604 | Nealls=767 (767 total) |

| EDM = 0.000149 (Goal: 1E-@5) | up = 1.0

| Valid Min. | Valid Paran. | Above EDM | Reached call Linit |

| Tre 1 Tree | False | False |

| Hesse failed | Wascov. | Accurste | Pos. def. | Forced |

| False | True | Tree | True | False |

{ﬁ__I_&;;; | Value | Hesse Err | Minos Err- | Minos Err+ | Limit- | Limit+ _
| Fixed |

[ﬁé_l_;_;TQ.o | 133 | 18 | | | -500 | 1500 _
{%l | r.1.l.® | 6 | 9 | | | -500 | 1500 _
[ﬁé | r 1.1.1 | -1.4 | 2.2 [ | | -500 | 1500 _
[ﬁﬁ | r 1.£.0 | 55 | 14 | | | -500 | 1500 _
[ﬁi | r 1.£.1 | 67 | 11 | | | -500 | 1500 _
[ﬁé | r 1.£.2 | 66 | 9 [ | | -500 | 1500 _
{ﬁé | i 1.é.0 | 79 | 30 | | | -500 | 1500 _
{%; | i 1.1.0 | -7 | 12 | | | -500 | 1500 _
{>é | i.1.1.1 | 0.10 | 0.10 | | | -500 | 1500 _
-] yes |

| 9| i.1.2.0 | 57 | 17 | | | -500 | 1500 _
{HlQI i 1.£.1 | 36 | 19 | | | -500 | 1500 _
< | I

(continues on next page)
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[ 11] i.1.2.2 | 30 | 20 | -500 | 1500 _
< | |

'Bin #1:'

| FON = -8.00Ev4 | Nealls=1359 (1359 total) |

| EDM = 0.00172 (Goal: 1E-05) | up = 1.0

| Volid Min. | Valid Paran. | Above EDM | Reached call Limit |

| e 1 Tree | False | False |

| Hesse failed | Wascov. | Accurste | Pos. def. | Forced |

| False | True | False | False | True |

[ﬁ__I_&;;é | Value | Hesse Err | Minos Err- | Minos Err+ | Limit- | Limit+ _
—| Fixed |

[ﬁé_l_;_;_e.o | -50 | 60 | | | -500 | 1500 _
{Hl | r.1 l.@ | -39 | 22 | | | -500 | 1500 _
{)é | r.1 1.1 | 2.5 | 6.5 | | | -500 | 1500 _
{H; | r.1 £.0 | -4 | 33 | | | -500 | 1500 _
{ﬁi | r.1 £.1 | -33 | 27 | | | -500 | 1500 _
[%é | r.1.£.2 | -23 | 28 | | | -500 | 1500 _
[ﬁé | i.1 é.@ | 186 | 18 | | | -500 | 1500 _
{ﬁ; | i.1 1.0 | -7 | 17 [ | | -500 | 1500 _
[ﬁé | i.1 1.1 | 0.10 | ©0.10 | | | -500 | 1500 _
—| yes |

| 9] i.1.2.0 | 82 | 5 | | | -500 | 1500 _
{ﬁl®| i £.1 | 76 | 11 [ | | -500 | 1500 _
| |
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[ 11] i.1.2.2 | 81 8 | -500 | 1500 _
< | |

'Bin #2:'

| FON = -1.5046v05 | Nealls=2607 (2607 total) |

| EDM = 0.00186 (Goal: 1E-05) | up = 1.0

| Volid Min. | Valid Paran. | Above EDM | Reached call Limit |

| Ralse | Tree | False | True |

| Hesse failed | Wascov. | Accurste | Pos. def. | Forced |

| False | True | False | True | False |

[ﬁ__I_&;;é | Value | Hesse Err | Minos Err- | Minos Err+ | Limit- | Limit+ _
—| Fixed |

[ﬁé_l_;_;_e.o | 100 | 160 | | | -500 | 1500 _
{Hl | r.1 l.@ | -6 | 10 | | | -500 | 1500 _
{)é | r.1 1.1 | -4 | 7 | | | -500 | 1500 _
{H; | r.1 £.0 | 50 | 50 | | | -500 | 1500 _
{ﬁi | r.1 £.1 | 70 | 40 | | | -500 | 1500 _
[%é | r.1.£.2 | 60 | 50 | | | -500 | 1500 _
{%é | i.1 é.@ | 260 | 60 | | | -500 | 1500 _
[ﬁi | i.1 1.0 | 2.7 | 2.9 | | | -500 | 1500 _
[ﬁé | i.1 1.1 | 0.10 | ©0.10 | | | -500 | 1500 _
—| yes |

| 9] i.1.2.0 | 78 | 28 | | | -500 | 1500 _
{ﬁl®| i £.1 | 60 | 40 | | | -500 | 1500 _
| |

(continues on next page)
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| 1] i.1.2.2 | 70

(continued from previous page)

-500 |

1500

=1 I

'Bin #3:'

| FON = -a.538E+5 | Nealls=1108 (1108 total) |

| EDM = 0.00788 (Goal: 1E-05) | up = 1.0

| Volid Min. | Valid Paran. | Above EDM | Reached call Limit |

| Ralse | Tre | Tree | False |

| Hesse failed | Wascov. | Accurste | Pos. def. | Forced |

| False | True | Tree | True | False |

[ﬁ__I_&;;é | Value | Hesse Err | Minos Err- | Minos Err+ | Limit- | Limit+ _
| Fixed |

{%é_l_;_;je.o | 395 | 28 | | | -500 | 1500 _
{Hl | r.1.l.0 | -8 | 9 [ | | -500 | 1500 _
{)é | r 1.1.1 | -5 | 4 [ | | -500 | 1500 _
{H; | r 1.£.0 | 45 | 11 [ | | -500 | 1500 _
[ﬁl | r 1.£.1 | 4 | 14 [ | | -500 | 1500 _
[%é | r 1.£.2 | 27 | 12 | | | -500 | 1500 _
{%é | 1 1.é.0 | 310 | 40 | | | -500 | 1500 _
[ﬁi | 1 1.1.0 | 8 | 11 [ | | -500 | 1500 _
[ﬁé | 1 1.1.1 | ©0.10 | 0.10 | | | -500 | 1500 _
—| yes |

| 9] 1i.1.2.0 | 82 | 11 | | | -500 | 1500 _
[ﬁl®| i 1.£.1 | 125 | 10 | | | -500 | 1500 _
= ! (continues on next page)
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[ 11] i.1.2.2 | 110 | 11 | -500 | 1500 _
< | |

'Bin #4:'

| PN = -1.371Ev6 | Nealls=2001 (2001 total) |

| EDM = 0.00707 (Goal: 1E-05) | up = 1.0

| Volid Min. | Valid Paran. | Above EDM | Reached call Limit |

| Ralse | Tree | False | True |

| Hesse failed | Wascov. | Accurste | Pos. def. | Forced |

| False | True | False | True | False |

[ﬁ__I_&;;é | Value | Hesse Err | Minos Err- | Minos Err+ | Limit- | Limit+ _
—| Fixed |

{HQ_I_;_;_e.o | 580 | 60 | | | -500 | 1500 _
{Hl | r.1 l.@ | 10 | 7 | | | -500 | 1500 _
{)é | r.1 1.1 | 5 | 5 | | | -500 | 1500 _
[%; | r.1 £.0 | =77 | 13 | | | -500 | 1500 _
{ﬁi | r.1 £.1 | -82 | 11 | | | -500 | 1500 _
[ﬁé | r.1.£.2 | -76 | 10 | | | -500 | 1500 _
{%é | i.1 é.@ | 640 | 50 | | | -500 | 1500 _
{ﬁ; | i.1 1.0 | -9 | 4 [ | | -500 | 1500 _
[ﬁé | i.1 1.1 | 0.10 | ©0.10 | | | -500 | 1500 _
—| yes |

| 9] i.1.2.0 | 96 | 6 | | | -500 | 1500 _
{ﬁl®| i £.1 | 95 | 9 [ | | -500 | 1500 _
| |
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[ 11] i.1.2.2 | 100 | 11 | -500 | 1500 _
< | |

'Bin #5:'

| FON = -4.75%+05 | Nealls=1560 (1560 total) |

| EDM = 0.000158 (Goal: 1E-@5) | up = 1.0

| Velid Min. | Valid Paran. | Above EDH | Reached call linit |

| e 1 Tree | False | False |

| Hesse failed | Wascov. | Accurste | Pos. def. | Forced |

| False | True | Tree | True | False |

[ﬁ__I_&;;é | Value | Hesse Err | Minos Err- | Minos Err+ | Limit- | Limit+ _
—| Fixed |

{HQ_I_;_;_e.o | -3 | 16 | | | -500 | 1500 _
{Hl | r.1 l.@ | 165 | 11 | | | -500 | 1500 _
{)é | r.1 1.1 | 125 | 13 | | | -500 | 1500 _
{H; | r.1 £.0 |  -2.9 | 5.5 | | | -500 | 1500 _
[ﬁi | r.1 £.1 | -1.8 | 7.3 | | | -500 | 1500 _
[%é | r.1.£.2 | 2.1 | 11.2 | | | -500 | 1500 _
{%é | i.1 é.@ | 475 | 7 | | | -500 | 1500 _
{ﬁ; | i.1 1.0 | 6 | 5 | | | -500 | 1500 _
[ﬁé | i.1 1.1 | 0.10 | ©0.10 | | | -500 | 1500 _
—| yes |

| 91 i.1.2.0 | -106 | 7 | | | -500 | 1500 _
{ﬁl®| i £.1 | -118 | 7 [ | | -500 | 1500 _
| |

(continues on next page)
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| 11] i.1.2.2 | -95.4 | 2.8 | | -500 | 1500 _
< | |

'Bin #6: "

| PN = -1.o7sErs | Nealls=1431 (1431 total) |

| EDM = 6.85E-06 (Goal: 1E-@5) | up = 1.0 |

| Velid Min. | Valid Paran. | Above EDH | Reached call linit |

| e 1 Tree | False | False |

| Hesse failed | Wascov. | Accurste | Pos. def. | Forced |

| False | True | Tree | True | False |

I(%“rl?l;r;lé | Value | Hesse Err | Minos Err- | Minos Err+ | Limit- | Limit+ _
—| Fixed |

|%;r;_;_o.o [ -1.1 | 14.4 | | | -500 | 1500 _
|(H1| | r.1 1|.0 | 94 | 4 | | | -500 | 1500 _
|()£ | r.1 1|.1 | 74 | 7 | | | -500 | 1500 _
I;).L) | r.1 ;0 | 6 | 8 | | | -500 | 1500 _
IHﬂlf | r.1 ;1 | -0.4 | 7.8 | | | -500 | 1500 _
I%!|3 | r.1.£.2 | 6 | 13 | | | -500 | 1500 _
|H€|5 | i.1 é.@ | 237.5 | 3.0 | | | -500 | 1500 _
|;>; | i.1 1|.0 | 3 | 4 [ | | -500 | 1500 _
|%2|3 | i.1 1|.1 | 0.10 | ©0.10 | | | -500 | 1500 _
—| yes |

| 9] i.1.2.0 | -150 | 3 | | | -500 | 1500 _
|%1|®| i ;1 | -146 | 4 [ | | -500 | 1500 _
| |
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| 11] i.1.2.2 | -139.8 | 2.8 | | -500 | 1500 _
< | |

'Bin #7:'

| FON = -2.1446005 | Nealls=1645 (1645 total) |

| EDM = 2.65E-05 (Goal: 1E-@5) | up = 1.0

| Velid Min. | Valid Paran. | Above EDH | Reached call linit |

| e 1 Tree | False | False |

| Hesse failed | Wascov. | Accurste | Pos. def. | Forced |

| False | True | Tree | True | False |

[ﬁ__I_&;;é | Value | Hesse Err | Minos Err- | Minos Err+ | Limit- | Limit+ _
—| Fixed |

[ﬁé_l_;_;_e.o | -80 | 19 | | | -500 | 1500 _
{Hl | r.1 l.@ | -5 | 6 | | | -500 | 1500 _
{)é | r.1 1.1 | -12 | 7 | | | -500 | 1500 _
{H; | r.1 £.0 | 0.7 | 27.3 | | | -500 | 1500 _
[ﬁi | r.1 £.1 | 4 | 31 | | | -500 | 1500 _
[%é | r.1.£.2 | -8 | 25 | | | -500 | 1500 _
{%é | i.1 é.@ | -139 | 11 | | | -500 | 1500 _
[ﬁi | i.1 1.0 | -3.5 | 2.6 | | | -500 | 1500 _
[ﬁé | i.1 1.1 | 0.10 | ©0.10 | | | -500 | 1500 _
—| yes |

| 9] i.1.2.0 | 203.4 | 2.6 | | | -500 | 1500 _
[ﬁl®| i £.1 | 198.9 | 3.0 | | | -500 | 1500 _
| |

(continues on next page)
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[ 11] i.1.2.2 | 195 | 4 | -500 | 1500 _
< | |

'Bin #8:'

| FON = -4.2Ev05 | Nealls=1510 (1510 total) |

| EDM = 1.59E-06 (Goal: 1E-@5) | up = 1.0

| Velid Min. | Valid Paran. | Above EDH | Reached call linit |

| e 1 Tree | False | False |

| Hesse failed | Wascov. | Accurste | Pos. def. | Forced |

| False | True | False | False | True |

[ﬁ__I_&;;é | Value | Hesse Err | Minos Err- | Minos Err+ | Limit- | Limit+ _
—| Fixed |

{HQ_I_;_;_e.o | -3.1 | 16.3 | | | -500 | 1500 _
{Hl | r.1 l.@ | 2.1 | 5.3 | | | -500 | 1500 _
{)é | r.1 1.1 | 0.06 | 3.26 | | | -500 | 1500 _
{H; | r.1 £.0 | 156 | 29 | | | -500 | 1500 _
{ﬁi | r.1 £.1 | 243 | 20 | | | -500 | 1500 _
[ﬁé | r.1.£.2 | 167 | 27 | | | -500 | 1500 _
{%é | i.1 é.@ | 105 | 8 | | | -500 | 1500 _
[ﬁi | i.1 1.0 | 1.0 | 4.9 | | | -500 | 1500 _
[ﬁé | i.1 1.1 | 0.10 | ©0.10 | | | -500 | 1500 _
—| yes |

| 9] i.1.2.0 | -248 | 19 | | | -500 | 1500 _
{ﬁl®| i £.1 | -169 | 29 [ | | -500 | 1500 _
| |
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| 11] i.1.2.2 | -223 | 20 | | -500 | 1500 _
< | |

'Bin #9:'

| FON = -6.071Ev5 | Nealls=1829 (1829 total) |

| EDM = 0.00232 (Goal: 1E-05) | up = 1.0

| Volid Min. | Valid Paran. | Above EDM | Reached call Limit |

| False | True | Tree | False |

| Hesse failed | Wascov. | Accurste | Pos. def. | Forced |

| False | True | False | False | True |

[ﬁ__I_&;;é | Value | Hesse Err | Minos Err- | Minos Err+ | Limit- | Limit+ _
—| Fixed |

[ﬁé_l_;_;_e.o | 50 | 21 | | | -500 | 1500 _
{Hl | r.1 l.@ | -9 | 9 | | | -500 | 1500 _
{)é | r.1 1.1 | -0.8 | 10.2 | | | -500 | 1500 _
{H; | r.1 £.0 | -80 | 80 | | | -500 | 1500 _
{ﬁi | r.1 £.1 | 25 | 89 | | | -500 | 1500 _
[ﬁé | r.1.£.2 | -30 | 80 | | | -500 | 1500 _
[ﬁé | i.1 é.@ | 0.16 | 10.69 | | | -500 | 1500 _
{ﬁ; | i.1 1.0 | 6 | 3 | | | -500 | 1500 _
[ﬁé | i.1 1.1 | 0.10 | ©0.10 | | | -500 | 1500 _
—| yes |

| 9] i.1.2.0 | -344 | 18 | | | -500 | 1500 _
{ﬁl®| i £.1 | -357 | 7 | | | -500 | 1500 _
| |

(continues on next page)
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| 11] i.1.2.2 | -340 | 7 | -500 | 1500 _
< | |

'Bin #10:"'

| FON = -1.856v05 | Nealls=1098 (1098 total) |

| EDM = 0.00301 (Goal: 1E-05) | up = 1.0

| Volid Min. | Valid Paran. | Above EDM | Reached call Limit |

| False | True | Tree | False |

| Hesse failed | Wascov. | Accurste | Pos. def. | Forced |

| False | True | False | False | True |

[ﬁ__I_&;;é | Value | Hesse Err | Minos Err- | Minos Err+ | Limit- | Limit+ _
—| Fixed |

{HQ_I_;_;_e.o | 36 | 11 | | | -500 | 1500 _
{Hl | r.1 l.@ | -8 | 16 | | | -500 | 1500 _
{)é | r.1 1.1 | 1.6 | 3.4 | | | -500 | 1500 _
{H; | r.1 £.0 | 202 | 12 | | | -500 | 1500 _
{ﬁi | r.1 £.1 | 203 | 6 | | | -500 | 1500 _
[ﬁé | r.1.£.2 | 195 | 4 | | | -500 | 1500 _
{%é | i.1 é.@ | 31 | 15 | | | -500 | 1500 _
{ﬁ; | i.1 1.0 | -48 | 7 [ | | -500 | 1500 _
[ﬁé | i.1 1.1 | 0.10 | ©0.10 | | | -500 | 1500 _
—| yes |

| 9] i.1.2.0 | -30 | 70 | | | -500 | 1500 _
{ﬁl®| i £.1 | 17 | 66 [ | | -500 | 1500 _
| |
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| 1] i.1.2.2 | 5

(continued from previous page)

-500 |

1500

=1 I

'Bin #11:'

| FON = -.088Eres | Nealls=1721 (1721 total) |

| EDM = 0.000158 (Goal: 1E-05) | up = 1.0

| Volid Min. | Valid Paran. | Above EDM | Reached call Limit |

| Twe 1 True | False | False |

| Hesse failed | Wascov. | Accurste | Pos. def. | Forced |

| False | True | Tree | True | False |

[ﬁ__I_&;;é | Value | Hesse Err | Minos Err- | Minos Err+ | Limit- | Limit+ _
| Fixed |

{%é_l_;_;je.o | 16 | 59 | | | -500 | 1500 _
{Hl | r.1.l.0 | 6 | 9 [ | | -500 | 1500 _
{)é | r 1.1.1 | 6 | 8 [ | | -500 | 1500 _
{H; | r 1.£.0 | -70 | 60 [ | | -500 | 1500 _
[ﬁl | r 1.£.1 | -70 | 60 [ | | -500 | 1500 _
[ﬁé | r 1.£.2 | -80 | 60 | | | -500 | 1500 _
[ﬁé | 1 1.é.0 | 66 | 19 | | | -500 | 1500 _
[ﬁi | i 1.1.0 | 2.8 | 4.8 | | | -500 | 1500 _
[ﬁé | 1 1.1.1 | ©0.10 | 0.10 | | | -500 | 1500 _
—| yes |

| 9] 1i.1.2.0 | 70 | 70 | | | -500 | 1500 _
{%l®| i 1.£.1 | 70 | 60 | | | -500 | 1500 _
= ! (continues on next page)
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[ 11] i.1.2.2 | 70 | 70 | -500 | 1500 _
< | |

'Bin #12:'

| FoN = -2.5086v04 | Nealls1372 (1372 total) |

| EDM = 7.06E-05 (Goal: 1E-@5) | up = 1.0

| Velid Min. | Valid Paran. | Above EDH | Reached call linit |

| e 1 Tree | False | False |

| Hesse failed | Wascov. | Accurste | Pos. def. | Forced |

| False | True | Tree | True | False |

[ﬁ__I_&;;é | Value | Hesse Err | Minos Err- | Minos Err+ | Limit- | Limit+ _
—| Fixed |

{HQ_I_;_;_e.o | -36 | 15 | | | -500 | 1500 _
{Hl | r.1 l.@ | -9 | 5 | | | -500 | 1500 _
{)é | r.1 1.1 | -5 | 5 | | | -500 | 1500 _
{H; | r.1 £.0 | 60 | 23 | | | -500 | 1500 _
{ﬁi | r.1 £.1 | 57 | 23 | | | -500 | 1500 _
[%é | r.1.£.2 | 51 | 22 | | | -500 | 1500 _
[ﬁé | i.1 é.@ | 36 | 16 | | | -500 | 1500 _
[ﬁi | i.1 1.0 | 1.2 | 5.0 | | | -500 | 1500 _
[ﬁé | i.1 1.1 | 0.10 | ©0.10 | | | -500 | 1500 _
—| yes |

| 9] i.1.2.0 | 56 | 24 | | | -500 | 1500 _
{ﬁl®| i £.1 | 58 | 22 | | | -500 | 1500 _
| |
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[ 11] i.1.2.2 | 54 | 21 | -500 | 1500 _
< | |

'Bin #13:'

| PN = -4.279Ev04 | Nealls=1079 (1079 total) |

| EDM = 0.000103 (Goal: 1E-@5) | up = 1.0 |

| Velid Min. | Valid Paran. | Above EDH | Reached call linit |

| e 1 Tree | False | False |

| Hesse failed | Wascov. | Accurste | Pos. def. | Forced |

| False | True | Tree | True | False |

I(%“rl?l;r;lé | Value | Hesse Err | Minos Err- | Minos Err+ | Limit- | Limit+ _
—| Fixed |

|%;r;_;_o.o | 15 | 10 | | | -500 | 1500 _
|(H1| | r.1 1|.0 | 43 | 7 | | | -500 | 1500 _
|()£ | r.1 1|.1 | 31 | 9 | | | -500 | 1500 _
I;).L) | r.1 ;0 | -11 | 15 | | | -500 | 1500 _
IHﬂlf | r.1 ;1 | -12 | 12 | | | -500 | 1500 _
I%!|3 | r.1.£.2 | -18 | 16 | | | -500 | 1500 _
|H€|5 | i.1 é.@ | -20 | 4 | | | -500 | 1500 _
|;>; | i.1 1|.0 | 4 | 6 | | | -500 | 1500 _
|%2|3 | i.1 1|.1 | 0.10 | ©0.10 | | | -500 | 1500 _
—| yes |

| 9] i.1.2.0 | 102.4 | 3.1 | | | -500 | 1500 _
|%1|®| i ;1 | 102 | 3 | | | -500 | 1500 _
| |
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[ 11] i.1.2.2 | 97 4 | -500 | 1500 _
< | |

'Bin #14:"'

| PN = -9.58004 | Nealls=1204 (1294 total) |

| EDM = 0.000535 (Goal: 1E-@5) | up = 1.0

| Velid Min. | Valid Paran. | Above EDH | Reached call linit |

| e 1 Tree | False | False |

| Hesse failed | Wascov. | Accurste | Pos. def. | Forced |

| False | True | Tree | True | False |

[ﬁ__I_&;;é | Value | Hesse Err | Minos Err- | Minos Err+ | Limit- | Limit+ _
—| Fixed |

{HQ_I_;_;_e.o | -11 | 14 | | | -500 | 1500 _
{Hl | r.1 l.@ | 2.4 | 6.6 | | | -500 | 1500 _
{)é | r.1 1.1 | 2.8 | 4.6 | | | -500 | 1500 _
{H; | r.1 £.0 | 115 | 23 | | | -500 | 1500 _
{ﬁi | r.1 £.1 | 90 | 26 | | | -500 | 1500 _
[%é | r.1.£.2 | 97 | 28 | | | -500 | 1500 _
[ﬁé | i.1 é.@ | -4 | 14 | | | -500 | 1500 _
[ﬁi | i.1 1.0 |  -2.9 | 6.1 [ | | -500 | 1500 _
[ﬁé | i.1 1.1 | 0.10 | ©0.10 | | | -500 | 1500 _
—| yes |

| 9] i.1.2.0 | 103 | 25 | | | -500 | 1500 _
[ﬁl®| i £.1 | 123 | 19 | | | -500 | 1500 _
| |

(continues on next page)
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[ 11] i.1.2.2 | 112 | 25 | -500 | 1500 _
< | |

'Bin #15:"'

| PN = -1.6926v05 | Nealls=11 (111 total) |

| EDM = 0.00244 (Goal: 1E-05) | up = 1.0

| Volid Min. | Valid Paran. | Above EDM | Reached call Limit |

| False | True | Tree | False |

| Hesse failed | Wascov. | Accurste | Pos. def. | Forced |

| False | True | False | False | True |

[ﬁ__I_&;;é | Value | Hesse Err | Minos Err- | Minos Err+ | Limit- | Limit+ _
—| Fixed |

[ﬁé_l_;_;_e.o | 8 | 19 | | | -500 | 1500 _
{Hl | r.1 l.@ | -2.5 | 9.3 | | | -500 | 1500 _
{)é | r.1 1.1 | 3 | 4 | | | -500 | 1500 _
{H; | r.1 £.0 | 193 | 9 | | | -500 | 1500 _
{ﬁi | r.1 £.1 | 198 | 3 | | | -500 | 1500 _
[ﬁé | r.1.£.2 | 190 | 15 | | | -500 | 1500 _
{%é | i.1 é.@ | 40 | 40 | | | -500 | 1500 _
{ﬁ; | i.1 1.0 | -28 | 13 | | | -500 | 1500 _
[ﬁé | i.1 1.1 | 0.10 | ©0.10 | | | -500 | 1500 _
—| yes |

| 9] i.1.2.0 | -22 | 75 | | | -500 | 1500 _
[ﬁl®| i £.1 |  -2.7 | 59.9 | | | -500 | 1500 _
| |
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[ 11] i.1.2.2 | -25 | 87 | | -500 | 1500 _
< | |

'Bin #16:"'

| PN = -1.798Ev05 | Nealls=1159 (159 total) |

| EDM = 0.00754 (Goal: 1E-05) | up = 1.0

| Volid Min. | Valid Paran. | Above EDM | Reached call Limit |

| False | True | Tree | False |

| Hesse failed | Wascov. | Accurste | Pos. def. | Forced |

| False | True | False | False | True |

[ﬁ__I_&;;é | Value | Hesse Err | Minos Err- | Minos Err+ | Limit- | Limit+ _
—| Fixed |

{HQ_I_;_;_e.o | 9 | 13 | | | -500 | 1500 _
{Hl | r.1 l.@ | -2.1 | 5.4 | | | -500 | 1500 _
{)é | r.1 1.1 | 2.3 | 3.1 | | | -500 | 1500 _
{H; | r.1 £.0 | 201 | 7 | | | -500 | 1500 _
{ﬁi | r.1 £.1 | 196 | 17 | | | -500 | 1500 _
[%é | r.1.£.2 | 197 | 7 | | | -500 | 1500 _
{%é | i.1 é.@ | 40 | 23 | | | -500 | 1500 _
[ﬁi | i.1 1.0 | -14 | 13 | | | -500 | 1500 _
[ﬁé | i.1 1.1 | 0.10 | ©0.10 | | | -500 | 1500 _
—| yes |

| 9] i.1.2.0 | 17 | 77 | | | -500 | 1500 _
{ﬁl®| i £.1 | 50 | 70 | | | -500 | 1500 _
| |

(continues on next page)
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(continued from previous page)

[ 11] i.1.2.2 | 19 | 81 | -500 | 1500 _
< | |

'Bin #17:'

| PN = -1.193+05 | Nealls=1486 (1486 total) |

| EDM = 0.000675 (Goal: 1E-@5) | up = 1.0

| Velid Min. | Valid Paran. | Above EDH | Reached call linit |

| e 1 Tree | False | False |

| Hesse failed | Wascov. | Accurste | Pos. def. | Forced |

| False | True | False | False | True |

[ﬁ__I_&;;é | Value | Hesse Err | Minos Err- | Minos Err+ | Limit- | Limit+ _
—| Fixed |

{HQ_I_;_;_e.o | 21 | 13 | | | -500 | 1500 _
{Hl | r.1 l.@ | 0.5 | 7.1 | | | -500 | 1500 _
{)é | r.1 1.1 | -0.013 | 3.887 | | | -500 | 1500 _
{H; | r.1 £.0 | 165 | 7 | | | -500 | 1500 _
[ﬁi | r.1 £.1 | 164 | 16 | | | -500 | 1500 _
[%é | r.1.£.2 | 166 | 6 | | | -500 | 1500 _
{%é | i.1 é.@ | 28 | 25 | | | -500 | 1500 _
{ﬁ; | i.1 1.0 | 15 | 17 [ | | -500 | 1500 _
[ﬁé | i.1 1.1 | 0.10 | ©0.10 | | | -500 | 1500 _
—| yes |

| 9] i.1.2.0 | 11 | 96 | | | -500 | 1500 _
{ﬁl®| i £.1 | 40 | 80 | | | -500 | 1500 _
| |

(continues on next page)
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(continued from previous page)

[ 11] i.1.2.2 | 13 | 97 | -500 | 1500 _
< | |

'Bin #18:'

| PN = -7.08Ev04 | Nealls=1547 (1547 total) |

| EDM = 0.000113 (Goal: 1E-@5) | up = 1.0

| Velid Min. | Valid Paran. | Above EDH | Reached call linit |

| e 1 Tree | False | False |

| Hesse failed | Wascov. | Accurste | Pos. def. | Forced |

| False | True | Tree | True | False |

[ﬁ__I_&;;é | Value | Hesse Err | Minos Err- | Minos Err+ | Limit- | Limit+ _
—| Fixed |

{HQ_I_;_;_e.o | 12 | 49 | | | -500 | 1500 _
{Hl | r.1 l.@ |  -2.7 | 9.7 | | | -500 | 1500 _
{)é | r.1 1.1 | 0.5 | 4.2 | | | -500 | 1500 _
[%; | r.1 £.0 | 110 | 120 | | | -500 | 1500 _
[ﬁi | r.1 £.1 | 90 | 150 | | | -500 | 1500 _
[ﬁé | r.1.£.2 | 90 | 140 | | | -500 | 1500 _
[ﬁé | i.1 é.@ | -20 | 41 | | | -500 | 1500 _
[ﬁi | i.1 1.0 | -1.8 | 13.4 | | | -500 | 1500 _
[ﬁé | i.1 1.1 | 0.10 | ©0.10 | | | -500 | 1500 _
—| yes |

| 9] i.1.2.0 | -80 | 170 | | | -500 | 1500 _
[ﬁl®| i £.1 | -90 | 150 | | | -500 | 1500 _
| |

(continues on next page)
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(continued from previous page)

[ 11] i.1.2.2 | -90 | 140 | | -500 | 1500 _
< | |

'Bin #19:'

| FON = -a.3sEre4 | Nealls=1778 (1778 total) |

| EDM = 0.000126 (Goal: 1E-@5) | up = 1.0

| Velid Min. | Valid Paran. | Above EDH | Reached call linit |

| e 1 Tree | False | False |

| Hesse failed | Wascov. | Accurste | Pos. def. | Forced |

| False | True | Tree | True | False |

[ﬁ__I_&;;é | Value | Hesse Err | Minos Err- | Minos Err+ | Limit- | Limit+ _
—| Fixed |

{HQ_I_;_;_e.o | 4 | 23 | | | -500 | 1500 _
{Hl | r.1 l.@ | 5 | 14 | | | -500 | 1500 _
{)é | r.1 1.1 | -10 | 13 | | | -500 | 1500 _
{H; | r.1 £.0 | -24 | 29 | | | -500 | 1500 _
{ﬁi | r.1 £.1 | -5 | 31 | | | -500 | 1500 _
[%é | r.1.£.2 | =22 | 28 | | | -500 | 1500 _
{%é | i.1 é.@ | 26 | 5 | | | -500 | 1500 _
{ﬁ; | i.1 1.0 | 3 | 3 | | | -500 | 1500 _
[ﬁé | i.1 1.1 | 0.10 | ©0.10 | | | -500 | 1500 _
—| yes |

| 9] i.1.2.0 | 103 | 7 | | | -500 | 1500 _
{ﬁl®| i £.1 |  106.7 | 2.7 [ | | -500 | 1500 _
| |

(continues on next page)
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(continued from previous page)

| 1] i.1.2.2 | 103 | 6 | -500 | 1500 .

=1 |

'0.0% (@)Failed. '

Checking the waves used (and filling waves variable for later use)

waves = amplitude.make_elm(result.values)
#waves = AmplitudeJPACfit.FitAmplitude.make_elm(result.values)

waves

e 1 m
o 1 0 o
1T 1 1 0
2 1 1 1
31 2 0
4 1 2 1
5 1 2 2

Filling strings with wave names (for plotting)

wave = npy.empty(len(waves),dtype="int")

string = npy.empty(len(waves),dtype="U5")

for index, w in waves.iterrows():
#print(wL"1"])
string[index]= " " format(wl["e"J,wlL"1"],w["m"])
wave[index]=w.name

Getting the bin mass values and number of events in datasample for those bins

bmass=[]
mcounts=[]
for index, bin in enumerate(binsda):
if len(bin)==0:
bmass. append(0.)
mcounts. append(@.)
else:
bmass.append(npy.average(bin["mass”"]))
mcounts. append(len(bin))
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6.4 Calculating the expected number of events in a a mass bin

total_nExp = npy.empty(len(binsma))
for index, the_bin, result in zip(range(len(binsma)), binsma, results):
# amp = testAmplitudeFit.FitAmplitude(initial)
# amp = AmplitudeJPACfit.FitAmplitude(initial)
amp=amplitude
amp.setup(the_bin)
total_nExp[index] = npy.average(amp.calculate(result.values))

Plot expected number of events vs mass and data vs mass (both should agree if fitting worked)

import matplotlib.pyplot as plt

mni = npy.empty(len(total_nExp), dtype=[("mass"”, float), ("int"”, float)])
mda = npy.empty(len(mcounts), dtype=[("mass”, float), ("intd”, float)])
mni["mass”] = bmass

mni["int"] = total_nExp

mni = pandas.DataFrame(mni)

counts, bin_edges = npy.histogram(mni["mass”], nbins, weights=mni["int"])
mda["mass”] = bmass

mdal["intd"] = mcounts

mda = pandas.DataFrame(mda)

dcounts, bin_edges = npy.histogram(mdal["mass"”], nbins, weights=mdal["intd"])
#dcounts, bin_edges = npy.histogram(bmass, nbins, weights=total_nExp)
centers = (bin_edges[:-1] + bin_edges[1:]) / 2

# Add yerr to argment list when we have errors

yerr = npy.empty(nbins)

yerr = npy.sqrt(counts)

myerr = npy.empty(nbins)

myerr = npy.sqrt(dcounts)

#plt.errorbar(centers,counts, yerr, fmt="s",linestyle="dashed"”,6 markersize='10',label=
<"nExp")

plt.errorbar(centers,total_nExp, yerr, fmt="s" K linestyle="dashed”,markersize='10",
—label="nExp")

plt.errorbar(centers,mcounts, myerr, fmt="0",6 label="Data")

#plt.xlim(.6, 3.2)

#plt.ylim(0.,65000)

plt.legend(loc="upper right")

plt.show()
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[14]:

[15]:

[16]:

4l nExp

120000 " Dot
100000 ;o

80000 Py

60000 -

40000 4

20000 1

1z 14

Calculate initial intensities (in case we need to check them)

intensities = []

for the_bin in binsda:

# amp = AmplitudeJPACfit.FitAmplitude(initial)
amp.setup(the_bin)
intensities.append(amp.calculate(Vs))

intesities=pandas.DataFrame(intensities)

6.5 Calculate the expected number of events for each wave (vs mass)

wave_nExp = npy.empty([len(waves),len(binsma)],"f16")

for i in range(len(waves)):

for index, the_bin, result in zip(range(len(binsma)), binsma, results):
amp = testAmplitudeFit.FitAmplitude(initial)
amp.setup(the_bin)
wave_nExp[i][index]

#

npy.average(amp.calculate_wave(result.values,wavel[i]))

Plot expected number of events vs mass for each wave

for i in range(len(waves)):
mni® = npy.empty(len(wave_nExp[il]), dtype=[("mass", float), ("int@", float)])
mni@["mass”] = bmass
mni@["int0"] = wave_nExp[il]
mni@® = pandas.DataFrame(mnio)
counts@, bin_edges = npy.histogram(mni@["mass”], nbins, weights=mni@["int0"])
centers (bin_edges[:-1] + bin_edges[1:1) / 2

# Add yerr to argment list when we have errors
(continues on next page)
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yerr

npy.empty(nbins)

yerr = npy.sqrt(counts®)
plt.errorbar(centers,wave_nExp[il], yerr, linestyle="dashed”, fmt="0",

—label=string[i])

(continued from previous page)

plt.legend(loc="upper right', title=" L M")

plt.show()
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6.6 Expected number of events vs mass for each wave in a same plot

[17]: for i in range(len(waves)):

plt.errorbar(centers,wave_nExp[i], yerr, linestyle="dashed”,fmt="0",
—label=string[i])

plt.legend(loc="upper right', title=" L M")

plt.show()
120000 ELM
/" -§= 100
100000 P #- 110
il -§- 111
80000 ;! -%- 120
I -§- 121
1
60000 A Py 8- 12
P
40000 - o !
|
I \
! A
20000 g \
_'..-. [ -r',
0| $oes-t9-d:
T T T T T T
0.8 10 12 14 16 18

Calculate Moments

[18]: HO00,HO10,HO11,H020,H021,H022,H100,H110,H111,H120,H121,H122,sigma4,sigmay = amp.
—calculate_moments_JPAC(result.values)

#H0O,H11,H10,H20,H21,H22 = amp.calculate_moments_STD()
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6.7 Calculate PhaseMotion between two waves

In this example between 2nd and 3rd waves in amp list

plt.x1im(@.6, 2.)
plt.scatter(mni["mass"],H000,LABEL="H000")
plt.scatter(mni["mass"],H100,LABEL="H100")
plt.legend(loc="upper right')

plt.show()
ValueError Traceback (most recent call last)
<ipython-input-21-die42b4db3a2> in

1 plt.xlim( , )

--==> 2 plt.scatter(mni["mass"”],H000@,LABEL="H000")
3 plt.scatter(mni["mass”],H100,LABEL="H100")
4 plt.legend(loc="upper right')
5 plt.show()

~/.conda/envs/pypwa-development/lib/python3.7/site-packages/matplotlib/pyplot.py in.

o (x, vy, s, c, marker, cmap, norm, vmin, vmax, alpha, linewidths, verts,.
—edgecolors, plotnonfinite, data, **kwargs)

2846 verts=verts, edgecolors=edgecolors,

2847 plotnonfinite=plotnonfinite, **x({"data”: data} if data is not
-> 2848 None else {}), **kwargs)

2849 sci(__ret)

2850 return __ret

~/.conda/envs/pypwa-development/lib/python3.7/site-packages/matplotlib/__init__.py.
—in (ax, data, =*args, xxkwargs)

1597 def inner(ax, *args, data=None, **kwargs):
1598 if data is None:
-> 1599 return func(ax, *map(sanitize_sequence, args), **kwargs)
1600
1601 bound = new_sig.bind(ax, =*args, *xkwargs)

~/.conda/envs/pypwa-development/lib/python3.7/site-packages/matplotlib/axes/_axes.py.

—in (self, x, y, s, c, marker, cmap, norm, vmin, vmax, alpha, linewidths, .
—verts, edgecolors, plotnonfinite, *xkwargs)

4441 y = np.ma.ravel(y)

4442 if x.size != y.size:
-> 4443 raise ValueError("x and y must be the same size")

4444

4445 if s is None:

ValueError: x and y must be the same size
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[18]: phase = npy.empty(len(binsda))
for index, the_bin, result in zip(range(len(binsda)), binsda, results):
# amp = testAmplitudeFit.FitAmplitude()
# amp = AmplitudeJPACfit.FitAmplitude(initial)
amp.setup(the_bin)
phase[index] = amp.Phasediff(result.values,wave[4],wave[2])

Plot PhaseMotion

[19]: mnip = npy.empty(len(bmass), dtype=[("mass”, float), ("intp”, float)])
mnip[”"mass”] = bmass
mnip["intp"] = phase
mnip = pandas.DataFrame(mnip)
countsp, bin_edges = npy.histogram(mnip["mass"”], nbins, weights=mnip["intp"])
#countsp, bin_edges = npy.histogram(mnip["mass"], 25)

centers = (bin_edges[:-1] + bin_edges[1:]) / 2

# Add yerr to argment list when we have errors
yerr = npy.empty(nbins)

yerr = npy.sqrt(npy.abs(countsp))
plt.errorbar(centers,countsp, yerr, fmt="0")
#plt.xlim(.6, 2.5)

[19]: <ErrorbarContainer object of 3 artists>
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6.8 Write fitted values (of production amplitudes) to disk

[20]: final_values = pandas.DataFrame([res.np_values() for res in results],.
—.columns=results[0].parameters)
final_values.to_csv("final_values_JPAC.csv", index=False)

[21]: pandas.DataFrame([res.np_errors() for res in results], columns=results[@].parameters)

[21]: r.1.0.0 r.1.1.0 r.1.1.1 r.1.2.0 r.1.2.1 r.1.2.2 \
0 2.852249  2.454338  2.233434 2.357102  2.383402 2.626812
1 4.143564 6.957555  2.850610  2.725406  2.577218  3.350895
2 5.692306  4.785399 2.383390 8.044186 5.157728  3.613297
3 0.000000 0.000000 ©0.000000 ©.000000 ©.000000 ©.000000
4 44.106133 13.751319 19.829211 10.964590 13.588421 15.587226
5 34.436933 9.159502 11.498057 5.682668 8.133921 7.363222
6 7.198252  8.374227  4.763529 4.189970 4.520014  3.353074
7 11.671223 5.996570  4.279334 7.625037 5.538663 12.454837
8 6.475163  5.382701 5.416978 8.161982  8.444590 8.678492
9 8.721956  8.181113  8.761297 13.376127 16.434883 13.947150
10 8.493679 6.084142  8.505738 14.310373 10.479354  6.749547
11 3.855473 5.012773 4.741625 7.609596  3.837674  5.775665
12 3.037836  4.442392 5.428389  3.954342 3.764583 3.667913
13 5.321230  7.210871 6.045126  4.710401 3.813843 4.735120
14 3.567710  3.193201 3.337286  4.090491 3.627887  4.866442
15 6.727505 3.681380 4.365790 3.104282 5.219031 4.103600
16  6.177552  2.676033  3.828072 3.833456  3.289779  5.726847
17 2.933203  3.324188  3.654907 3.609211 4.131418 2.916676
18  3.051973 3.116716  3.546187 5.042575 3.908125 5.411048
19  2.687607  3.314947 4.027697 2.654148 4.601623 2.709061

(continues on next page)
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(continued from previous page)

i.1.0.0 i.1.1.0 1i.1.1.1 i.1.2.0 i.1.2.1 i.1.2.2
Q 30.355296 23.058165 0.1 29.117763 19.515329 21.461233
1 24.972032 16.099636 0.1 20.407775 15.720090 14.143814
2 35.220094 15.107411 0.1 14.095800 13.392294 16.332394
3 0.000000 0.000000 0.1 0.000000 0.000000 0.000000
4 12.307185 5.567356 0.1 10.009993 9.033432 6.326170
5 28.735040 13.816089 0.1 11.345555 17.985841 17.540164
6 17.183687 11.151904 0.1 13.529245 17.287970 16.054413
7 19.612032 6.767201 0.1 15.038266 14.425965 25.855571
8 17.661079 8.321693 0.1 17.488448 10.915935 22.474796
9 17.630661 12.990305 0.1 25.651122 14.814478 25.210855
10 8.246809 5.742596 0.1 10.345708 5.497219 9.727813
11 7.119417 12.499101 0.1 5.919945 5.846466 7.079995
12 13.051691 11.682621 0.1 9.414705 9.861358 12.532426
13 17.598563 16.636521 0.1 15.900800 14.740404 13.281171
14 8.841624 9.924517 0.1 8.551742 7.499289 9.294340
15 12.789609 16.679240 0.1 19.571438 13.145244 15.012328
16 18.829520 13.113563 0.1 20.012938 17.978662 23.420750
17 19.305438 13.300829 0.1 20.013559 11.407195 22.344017
18 18.860401 11.611010 0.1 21.188980 12.235497 23.397019
19 23.221308 25.126377 0.1 25.907302 15.642661 23.220975
final_values

r.1.0.9 r.1.1.0 r.1.1.1 r.1.2.9 r.1.2.1 r.1.2.2 \
Q 111.704412 60.453623 59.805884 61.078017 61.115139 62.403759
1 137.562715 64.190450 62.573028 65.067900 65.866904 70.420397
2 198.184937 64.268233 66.615670 64.595816 64.606409 69.656890
3 337.491982 72.959054 66.363838 71.371487 88.351834 80.233547
4 191.948115 72.071364 103.066780 91.422853 83.604409 72.393911
5 =-229.743178 82.435298 69.243004 91.917776 101.022541 107.038100
6 -151.579375 86.849678 71.505687 129.835388 127.271735 119.766565
7 -76.655901 75.693118 103.524504 146.645818 156.565194 152.959609
8 -65.816781 86.599772 124.420103 216.389109 200.722624 222.109393
9 -26.800948 67.763534 105.828129 269.445703 216.992426 244.480875
10 -67.342887 58.718273 74.548323 111.526792 83.759368 129.187741
11 -13.410233 144.691054 144.451525 39.366624 43.680159 36.585875
12 -5.720551 162.913340 153.937952 58.902362 60.435890 57.743208
13 1.810090 165.935186 165.998990 78.621711 77.283796 79.933338
14 1.808067 165.754963 161.907458 105.701858 106.483733 107.956861
15 4.371681 144.679254 145.952516 149.573552 143.805461 152.500957
16 14.178999 130.629862 126.308624 157.756320 155.465998 155.974918
17 15.816585 114.488989 117.105987 129.755851 126.990058 125.500639
18 12.896210 97.348436 99.699072 101.426950 103.016910 102.753527
19 17.379010 80.181185 83.618056 83.784640 88.080221 85.754140

(continues on next page)
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0 1
1 -2.
2 30
3 110.
4  585.
5 275.
6 79.
7 -57.
8 13.
9 42.
10 -127.
11 37.
12 -28.
13 -63.
14 -24.
15 7
16 39.
17 23.
18 11
19 -10.

i.1.0.0
.320825
994290
.953681
288478
360143
792660
726460
516859
190943
960919
001798
882643
108761
243685
282072
.885659
733446
952670
.472671
540275
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20.
19.

i.1.2.0
.262332
868300
.946604
.097682
656104
282243
104475
957406
732686
453626
286247
413219
433062
.086042
413737
678425
118227
606003
385896
.881675

4

2.
29.
-44.
-10.
-3.

31

47.

131

215.
-157.
73.
-25.
-17.
43.
53.
-10.

31

17.
-16.

i.1.2.1
.399611
703924
400564
011232
491047
671119
.613361
150633
.442304
905357
557282
946001
311471
541890
696063
303994
691878
.539561
023952
019906

153.
-123.
83.
-50.
17.

41
-21

-22.

23.

(continued from previous page)

i.1.2.2
.139527
.967649
.318831
.085719
.151311
.001849
.078527
.484341
.706465
900684
256984
273424
581979
548998
.968264
.211547
150941
.359807
056549
.178200

6.8. Write fitted values (of production amplitudes) to disk
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[1]:

[2]:

CHAPTER
SEVEN

PREDICTION TUTORIAL

Simulates “true data” corrected by acceptance, according to
the fitted values for the amplitude

import PyPWA as pwa

import numpy as npy

import pandas

import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore")

7.1 Define waves and amplitude (function) to simulate

initial=[]

for param_type in ["r", "i"]:
initial.append(f"{param_type}.
initial.append(f"{param_type}.
initial.append(f"{param_type}.
initial.append(f"{param_type}.
initial.append(f"{param_type}.
initial.append(f"{param_type}.

#import AmplitudeOLDfit

#amp = AmplitudeOLDfit.FitAmplitude(initial)

#

import AmplitudeJPACsim

amp = AmplitudeJPACsim.NewAmplitude()

#

#import AmplitudeJPACfit

#amp = AmplitudeJPACfit.FitAmplitude(initial)

D NN = =2
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7.2 Read input (flat) simulated (generated) data

[3]: data = pwa.read("etapiHEL_flat.txt")

Read flat data in gamp format (full information)

[4]: datag = pwa.read(”../TUTORIAL_FILES/raw_events.gamp")

Define number of bins (MUST be the same as the fitted parameters)

[5]: nbins=20
bins = pwa.bin_by_range(data, "mass"”, nbins, .6, 2.0)

Calculate the mass value and number of events in each bin

[6]: bmass=[]
mcounts=[]
for index, bin in enumerate(bins):
if len(bin)==0:
bmass. append(0.)
mcounts.append(@.)
else:
bmass.append(npy.average(bin["mass”"]1))
mcounts.append(len(bin))

7.3 Read parameters from fit

[7]: par = pwa.read("final_values_JPAC.csv")

Prepare for a binned simulation > Find intensities in each bin and max intensity for each bin.

[8]: int_values = []
max_values = []

params={}
for index, bin in enumerate(bins):
for param_type in ["r", "i"]:

.0"][index1})
.0"1[index]})
.1"1lindex]})
.0"][index]13})
.1"1lindex]})
.2"][index]13})

params.update({f"{param_type}.
params.update({f"{param_type}.
params.update({f"{param_type}.
params.update({f"{param_type}.
params.update({f"{param_type}.
params.update({f"{param_type}.

.0":par[f"{param_type}.
.0":par[f"{param_type’}.
1" :par[f"{param_type}.
.0":par[f"{param_type}.
1" :par[f"{param_type}.
.2":par[f"{param_type}.

—_ o
D NN ==
—_ o
N NN = =

[int,intmax] = pwa.simulate.process_user_function(amp,bin,params,16)
(continues on next page)
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(continued from previous page)

int_values.append(int)
max_values.append(intmax)

7.4 Simulate events for each bin (produce mask and mask them)

rejected_bins = []

masked_final_values = []

for int_value, bin in zip(int_values, bins):
rejection = pwa.simulate.make_rejection_list(int_value, max_values)
rejected_bins.append(bin[rejection])
masked_final_values.append(int_value[rejection])

Check how many events simulated by bin

for index, simulated_bin in enumerate(rejected_bins):
print(
f"Bin {index+1}'s length is {len(simulated_bin)}, "
f"{(len(simulated_bin) / len(bin)) * 100:.2f}% events were kept”

Bin 1's length is 4850, 1.79% events were kept
Bin 2's length is 6545, 2.42% events were kept
Bin 3's length is 10388, 3.84% events were kept
Bin 4's length is 25492, 9.42% events were kept
Bin 5's length is 65913, 24.34% events were kept
Bin 6's length is 27495, 10.15% events were kept
Bin 7's length is 15419, 5.69% events were kept
Bin 8's length is 17872, 6.60% events were kept
Bin 9's length is 31916, 11.79% events were kept
Bin 10's length is 45793, 16.91% events were kept
Bin 11's length is 20121, 7.43% events were kept
Bin 12's length is 10427, 3.85% events were kept
Bin 13's length is 10301, 3.80% events were kept
Bin 14's length is 12541, 4.63% events were kept
Bin 15's length is 15215, 5.62% events were kept
Bin 16's length is 18517, 6.84% events were kept
Bin 17's length is 17288, 6.39% events were kept
Bin 18's length is 12478, 4.61% events were kept
Bin 19's length is 8226, 3.04% events were kept
Bin 20's length is 5718, 2.11% events were kept

A OO0 O A W W

Stak data for all bins in one file (new_data)

for index, the_bin in zip(range(len(rejected_bins)), rejected_bins):
if index ==0:
(continues on next page)
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[12]:
[12]:

[1371:

[14]:
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new_

new_data=pandas.DataFrame(the_bin)

data =

new_data.append(the_bin,ignore_index=True)

#print(new_data)

new_data

A wWN =

387360
387361
387362
387363
387364

Even

432.
3277.
5034.
5547.
6527.

9849089.
9851359.
9853817.
9854636.
9854972.

tN

(SIS IO I N

ISEESEESENSEN ST
S ) O = =

[387365 rows x 7 columns]

theta
.075030
.106290
.092900
.201674 -1
.325940 3.

.940630
.055120
.189324 -1
.043920 2.
.607401

phi
.11080
.62386
.77176
.60246
00931

_ . W

-1.85137
-2.61521
.00286
97397

-1.62378

alpha
.279760
.912540
.243810
.418660
.637510

.307640
.743190
.850720
.604751
.638410

S © © O T
L

(SN I IR I ]

B OO O O

tM
.036087
.021695
.065768
.028844
.023814
.521166
.403025
.370487

.325758
.282602

(continued from previous page)

(SIS I IR NN

—_ e

mass

.730692
.706537
.730773
.701134
.722924

.968390
.960020
.944500
.971750
.978580

7.5 Calculate the number of expected events versus mass bins

total_nExp = npy.empty(len(rejected_bins))
for index, the_bin in zip(range(len(rejected_bins)), rejected_bins):

for param_type in ["r",
param_type ;.
param_type}.
param_type ;.
param_type ;.
param_type ;.
param_type ;.

params.
params.
params.
params.
params.
params.

update({f"”
update({f"
update({f"
update({f"
update({f"
update({f"

amp.setup(the_bin)

total_nExp[index] =

”i”]'

_

npy.average(amp.

D NN ==,

‘®H

‘211

.0":

par[f”

:par[f”
R
.0":
1

par[f"
par[f”
par[f"

:par[f”

param_type ;.
param_type ;.
param_type ;.
param_type ;.
param_type ;.
param_type ;.

calculate(params))

Plot number of true (100% acc) events versus mass

mni =

mni["mass”] = bmass
mni["int"] = total_nExp

— = = =) = =

.0"1[index]})
.0"][index1})
.1"1[index13})
.0"1[index]})
.1"]10index]13})
.2"1[index]})

D NN =2,

npy.empty(len(total_nExp), dtype=[("mass"”, float), ("int"”, float)])

(continues on next page)
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(continued from previous page)
mni = pandas.DataFrame(mni)
counts, bin_edges = npy.histogram(mni["”mass”], nbins, weights=mni["int"])

centers = (bin_edges[:-1] + bin_edges[1:]) / 2

# Add yerr to argment list when we have errors

yerr = npy.empty(nbins)

yerr = npy.sqrt(counts)
yerr=0.

plt.errorbar(centers,counts, yerr, fmt="s", 6 linestyle="dashed"”,markersize="'10",label=
<"nExp")

#plt.xlim(.6, 3.2)
#plt.ylim(Q.,65000)
plt.legend(loc="upper right')

plt.show()
! H - rExp
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7.6 Calculate Phase difference between two waves

[15]: V1=npy.ndarray(len(par))
V2=npy.ndarray(len(par))
V1 = par["r.1.1.1"]+par["1.1.1.1"1*(13)
V2 = par["r.1.2.1"]+par["1.1.2.1"1%(13)
if vV1.all() != @0 and V2.all() !'= 0:

phasediff = npy.arctan(npy.imag(V1*npy.conj(V2))/npy.real(Vixnpy.conj(V2)))
Plot PhaseMotion

[16]: mnip = npy.empty(len(bins), dtype=[("mass"”, float), ("phase”, float)])
mnip["”"mass”] = bmass

(continues on next page)
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(continued from previous page)
mnip["phase”] = phasediff
mnip = pandas.DataFrame(mnip)
counts, bin_edges = npy.histogram(mnip["mass"], 25, weights=mnip["phase”])
centers = (bin_edges[:-1] + bin_edges[1:1) / 2

# Add yerr to argment list when we have errors
yerr = npy.empty(100)

yerr = npy.sqrt(npy.abs(counts))
plt.errorbar(centers,counts, yerr, fmt="0")
plt.x1lim(0.6, 3.2)

[161: (0.6, 3.2)

D-H.H.. .+.++

Plot phi_HEL vs cos(theta_HEL) of predicted data (with 4 different contracts(gamma))

[17]: import matplotlib.colors as mcolors
from numpy.random import multivariate_normal

gammas = [0.8, 0.5, 0.3]
fig, axes = plt.subplots(nrows=2, ncols=2)

axes[0, 0].set_title('Linear normalization')
axes[0, 0].hist2d(new_datal["phi”], npy.cos(new_datal["theta”]), bins=100)
#axes[0, 0].hist2d(cut_list["phi"], npy.cos(cut_list["theta"]), bins=100)

for ax, gamma in zip(axes.flat[1:], gammas):
ax.set_title(r'Power law $(\gamma=%1.1f)$"' % gamma)
ax.hist2d(new_datal["phi”], npy.cos(new_datal["theta"]),
bins=100, norm=mcolors.PowerNorm(gamma))

fig.tight_layout()
(continues on next page)
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(continued from previous page)

plt.show()

Linear normalization Power law (y=0.8)

-2 o 2 -2 0 2

Power law (y= 0.5) Power law (y=0.3)

051
0.0

0.0

-0.5 -0.5

—Z o 2 -2 0 2

Plot cos(theta_HEL) vs mass for simulated data (with 4 different contrasts)

[18]: gammas = [0.8, 0.5, 0.3]
fig, axes = plt.subplots(nrows=2, ncols=2)

axes[0, 0].set_title('Linear normalization')
axes[0, 0].hist2d(new_data["mass”], npy.cos(new_datal["theta"]),bins=100)

for ax, gamma in zip(axes.flat[1:], gammas):
ax.set_title(r'Power law $(\gamma=%1.1f)$"' % gamma)
ax.hist2d(new_datal["mass”"], npy.cos(new_datal[”theta"]),
bins=100, norm=mcolors.PowerNorm(gamma))

fig.tight_layout()
plt.xlim(.6, 2.)
plt.show()

7.6. Calculate Phase difference between two waves 97



PyPWA Documentation, Release Development

Linear normalization Power law (y=0.8)

10 15 10 15

Power law (y = 0.5) Power law (y=0.3)

10 15 10 15 20

Plot phi_HEL vs mass for simulated data (with 4 different contrasts)

[19]: gammas = [0.8, 0.5, 0.3]
fig, axes = plt.subplots(nrows=2, ncols=2)

axes[0, 0].set_title('Linear normalization')
axes[0, 0].hist2d(new_data["mass”], new_data["phi"],bins=100)

for ax, gamma in zip(axes.flat[1:], gammas):
ax.set_title(r'Power law $(\gamma=%1.1f)$" % gamma)
ax.hist2d(new_data["mass"], new_datal["phi"],
bins=100, norm=mcolors.PowerNorm(gamma))

fig.tight_layout()
plt.xlim(.6, 2.)
plt.show()
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Linear normalization Power law (y=0.8)

10 15

Power law (y=0.3)

[ 1:

[20]: plt.hist(new_data["alpha"],50)
plt.show()

10000

B0O0 4

G000 4

4000 -

2000

-3 -2 -1 0 1 2 3

Plot mass versus alpha/Phi

[21]: gammas = [0.8, 0.5, 0.3]
fig, axes = plt.subplots(nrows=2, ncols=2)

axes[0, 0].set_title('Linear normalization')
axes[0, 0].hist2d(new_datal["mass”], new_data["alpha”],bins=100)

for ax, gamma in zip(axes.flat[1:], gammas):

(continues on next page)
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(continued from previous page)
ax.set_title(r'Power law $(\gamma=%1.1f)$"' % gamma)
ax.hist2d(new_datal["mass”], new_data["alpha"],
bins=100, norm=mcolors.PowerNorm(gamma))

fig.tight_layout()
plt.xlim(.6, 2.)
plt.show()

Linear normalization Power law (y=0.8)

10 15 10 15

Power law (y=0.5) Power law (y=0.3)

y 3

10 15 10 15 20
Plot mass versus alpha/Phi
[22]: gammas = [0.8, 0.5, 0.3]
fig, axes = plt.subplots(nrows=2, ncols=2)

axes[0, 0].set_title('Linear normalization')
axes[0, 0].hist2d(new_datal["phi”],new_datal["alpha"],bins=100)

for ax, gamma in zip(axes.flat[1:], gammas):
ax.set_title(r'Power law $(\gamma=%1.1f) $' % gamma)
ax.hist2d(new_datal["phi"], new_data["alpha”],
bins=100, norm=mcolors.PowerNorm(gamma))

fig.tight_layout()

plt.show()
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Linear normalization Power law (y=0.8)

-2 0 2 -2 o 2

Power law (y=0.5) Power law (y=0.3)

7.7 Write predicted (true) data to disk

[23]: new_data.to_csv("predictedjpac.csv”, index=False)

Write gamp format predicted to data (true)

[21]: (data["EventN"]) .astype(int)

(new_data["EventN"]) .astype(int)

< X
I

predm = npy.isin(x,y)
pdatag = datag[predm]
pwa.write("raw_predicted.gamp”,pdatag)

Write predicted accepted data > events.pf is a mask of accepted data that has been
produced by Geant

[24]: acc = pwa.read("events.pf")
accn = acc.to_numpy()

mask_acc_phy = npy.logical_and(predm,accn)
pdatag_acc = datagl[mask_acc_phy]
pdata_acc = datal[mask_acc_phy]

pdata_acc.to_csv("predictedJPAC_ACC.csv"”, index=False)
pwa.write("acc_predictedJPAC.gamp"”,pdatag_acc)
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CHAPTER
EIGHT

WORKING WITH DATA

8.1 Reading and Writing Data

This is the reference documentation for the functions and classes inside PyPWA that can be used
for parsing and writing data to disk. There exists four different methods to do so:

* Reading and Writing Data
* Basic Data Sanitization

* Data Iterators and Writers
* Working with HDF5

* Caching

PyPWA also defines a vector data types and collections for working with Particles, Four Vectors, and
Three Vectors, which can be found here.

8.1.1 Reading and Writing Data

Reading and writing from disk to memory. This method will load the entire dataset straight into
RAM, or write a dataset straight from RAM onto disk.

PyPWA. read(filename, use_pandas=False, cache=True, clear _cache=False)
Reads the entire file and returns either DaataFrame, ParticlePool, or standard numpy array
depending on the data found inside the file.
Parameters

e filename (Path, str) — File to read.

* use_pandas (bool) — Determines if a numpy data type or pandas data type
is returned.

* cache (bool, optional) — Enables or disables caching. Defaults to the
enabled. Leaving this enabled should do no harm unless there something
is broken with caching. Disable this if returning the wrong data for debug
purposes. If it continues to return the incorrect data when disabled then
caching isn’t the issue.

103



PyPWA Documentation, Release Development

* clear_cache (bool, optional) — Forcefully clears the cache for the files
that are parsed. Instead of loading the cache, it'll delete the cache and
write a new cache object instead if cache is enabled.

Returns
e DataFrame - If the file is a kVars file, CSV, or TSV
* npy.ndarray - If the file is a numpy file, PF file, or single column txt file
* ParticlePool - If parsing a gamp file

Raises
RuntimeError — If there is no plugin that can load the data found

PyPWA.write(filename, data, cache=True, clear_cache=False)

Reads the entire file and returns either DaataFrame, ParticlePool, or standard numpy array
depending on the data found inside the file.

Parameters
* filename (Path, str) — The filename of the file you wish to write

* cache (bool, optional) — Enables or disables caching. Defaults to the
enabled. Leaving this enabled should do no harm unless there something
is broken with caching.

* clear_cache (bool, optional) — Forcefully clears the cache for the files
that are parsed. It’ll delete the cache and write a new cache object instead
when cache is enabled.

Raises
RuntimeError — If there is no plugin that can load the data found

8.1.2 Basic Data Sanitization

Allows quick converting of data from Pandas to Numpy, as well as preps data to be passed to non-
Python function’s and classes; Such as Fortran modules compiled with f2py, or C/C++ modules
bound by Cython.

PyPWA . pandas_to_numpy (df)

Converts Pandas DataTypes to Numpy

Takes a Pandas Series or DataFrame and converts it to Numpy. Pandas does have a built
in to_records function, however records are slower than Structured Arrays, while containing
much of the same functionality.

Parameters
df (Pandas Series or DataFrame) — The pandas data structure that you wish
to be converted to standard Numpy Structured Arrays

Returns
The resulting Numpy array or structured array containing the data from the
original DataFrame or Series. If it was a Series with each row named (like an
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element from a DataFrame) it'll be a Structured Array with length=1, if it was
a standard Series it'll return a single Numpy Array, and if it was a DataFrame
the results will be stored in Structured array matching the types and names
from the DataFrame.

Return type
Numpy ArrayLike
PyPWA. to_contiguous(data, names)
Convert DataFrame or Structured Array to List of Contiguous Arrays
This takes a data-set and a list of column names and converts those columns into Contiguous
arrays. The reason to use Contiguous arrays over DataFrames or Structured arrays is that the
memory is better aligned to improve speed of computation. However, this does double the

memory requirements of your data-set since this copies all the events over to the new array.
Use only in amplitudes where you need to maximize the speed of your amplitude.

Parameters

e data (Structured Array, DataFrame, or Dict-like) — This is the data
frame or Structured array that you want to extract columns from

* pames (List of Column Names or str) — This is either a list of columns you
want from the array, or a single column you want from the array

Returns
If you provide only a single column, it'll only return a single array with the
data from that array. However, if you have supplied multiple columns in a list
or tuple, it'll return a tuple of arrays in the same order as the supplied names.

Return type
ArrayLike or Tuple[ArrayLike]

8.1.3 Data lterators and Writers

Reading and writing a single event at a time instead of having the entire contents of the dataset
memory at once. This is good choice if you are wanting to rapidly transform the data that is on
disk.

class PyPWA.DataType (value)
Enumeration for type of data to be read or written using the reader and writer.

Because of how the reader and writer are designed they can not inspect the data before it
starts working with the data. This enum is used to specify the type of data you're working
with.

* BASIC = Standard arrays with no columns
e STRUCTURED = Columned array (CSV, TSV, DataFrames)
 TREE VECTOR = Particle Data (GAMP)
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PyPWA.get_writer(filename, dtype)
Returns a writer that can write to the file one event at a time

Parameters
* filename (str, Path) — The file that you want to write to

* dtype (DataType) - Specifies the type of that needs to be written.
TREE_VECTOR is used for ParticlePools and only works with the ‘.gamp’
extension for now. STRUCTURED ARRAY is used for both numpy struc-
tured arrays and pandas DataFrames. BASIC is used for standard numpy
arrays.

Returns
A writer that can read the file, defined in PyPWA.plugins.data

Return type
templates.WriterBase

Raises
RuntimeError — If there is no plugin that can write the data found

See also:

write
Writes a ParticlePool, DataFrame, or array to file

Examples

The writer can be used to write a ParticlePool one event at a time

>>> writer = get_writer("example.gamp”, DataType.TREE_VECTOR)
>>> for event in particles.iter_events():

>>> writer.write(event)

>>> writer.close()

PyPWA.get_reader (filename, use_pandas=False)
Returns a reader that can read the file one event at a time

Note: The return value from the reader coule bd a pointer, if you need to keep the event
without it being overwrote on the next call, you must call the copy method on the returned
data to get a unique copy.

Parameters
e filename (str, Path) — File to read

* use_pandas (bool) — Determines if a numpy data type or pandas data type
is returned.
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Returns
A reader that can read the file, defined in PyPWA.plugins.data

Return type
templates.ReaderBase

Raises
RuntimeError — If there is no plugin that can load the data found

See also:

read
Reads an entire file into a DataFrame, ParticlePool, or array

Examples

The reader can be used inside a standard for loop

>>> reader = get_reader("example.gamp”)
>>> for event in reader:

>>> my_kept_event = event.copy()
>>> regular_event = event

>>> reader.close()

8.1.4 Caching

Using pickles to quickly write and read data straight from disk as intermediate caching steps. These
are special functions that allow caching values or program states quickly for resuming later. This
is a good way to save essential data for a Jupyter Notebook so that if the kernel is rebooted, data
isn’t lost.

PyPWA.cache.read(path, intermediate="True, remove_cache=False)

Reads a cache object

This reads caches objects from the disk. With its default settings it'll read the file as if it were
a cache file. If intermediate is set to False, the path will be the source file, and it'll load the
cache file as long as the source file’s hash hasn’t changed. It can also be

Parameters

* path (Path or str) — The path of the source file, or path where you want
the intermediate step to be stored.

e intermediate (bool) — If set to true, the cache will be treated as an inter-
mediate step, this means it will assume there is no data file associated with
the data, and will not check file hashes. By default this is True

* remove_cache (bool) — Setting this to true will remove the cache.
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Returns
The first value in the tuple is whether the cache is valid or not and the second
value in the returned tuple is whatever data was stored in the cache.

Return type
Tuple[bool, any]
PyPWA.cache.write(path, data, intermediate=True)
Writes a cache file

With its default settings, it will treat the path as a save location for the cache as an intermedi-
ate step. If intermediate is set to false, it'll write the cache file into a computed cache location
and store the source file’s hash in the cache for future comparison.

Parameters

* path (Path or str) — The path of the source file, or path where you want
the intermediate step tO be stored.

* data (Any) — Whatever data you wish to be stored in the cache. Almost
anything that can be stored in a variable, can be stored on disk.

* intermediate (bool) — If set to true, the cache will be treated as an inter-
mediate step, this means it will assume there is no data file associated with
the data, and will not check file hashes.

8.2 Binning

We provide functions that make binning data in memory an easy process, however for HDF5 a
future more in-depth example and documentation will be made available.

PyPWA.bin_with_fixed_widths(dataframe, bin_series, fixed_size, lower cut=None,
upper_cut=None)
Bins a dataframe by fixed using a series in memory

Bins an input array by a fixed number of events in memory. You must put all data you want
binned into the DataFrame or Structured Array before use. Each resulting bin can be further
binned if you desire.

If the fixed_size does not evenly divide into the length of bin_series, the first and last bin will
contain overflows.

Parameters

* dataframe (DataFrame or Structured Array) — The dataframe or numpy
array that you wish to break into bins

* bin_series (Array-1like) — Data that you want to bin by, selectable by user.
Must have the same length as dataframe. If a column name is provided,
that column will be used from the dataframe.

* fixed_size (int) — The number of events you want in each bin.
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e lower_cut (float, optional) — The lower cut off for the dataset, if not
provided it will be set to the smallest value in the bin_series

e upper_cut (float, optional) — The upper cut off for the dataset, if not
provided will be set to the largest value in the bin_series

Returns
A list of array-likes that have been masked off of the input bin_series.

Return type
List[DataFrame or Structured Array]

Raises
ValueError — If the length of the input array and bin array don’t match

Warning: This function does all binning in memory, if you are working with a large
dataset that doesn’t fit in memory, or if you overflow while you are binning, you must use
a different binning method

See also:
PyPWA.libs.file.project

A numerical dataset that supports binning on disk instead of in-memory. It’s slower and
requires more steps to use, but should work even on memory limited systems.

Examples

Binning a DataFrame with values x, y, and z using z to bin

>>> data = {

>>> "x": npy.random.rand(1000), "y": npy.random.rand(1000),
>>> "z": (npy.random.rand(1000) * 100) - 50
>>>

>>> df = pd.DataFrame(data)
>>> list(df.columns)
[“X”, lIyII, IIle:l

This will give us a usable DataFrame, now to make a series out of z and use it to make 10
bins.

>>> binning = df["z"]

>>> range_bins = bin_with_fixed_widths(df, binning, 250)
>>> len(range_bins)

4

Each bin should have exactly 250 events in size
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>>> lengths = []

>>> for abin in range_bins:

>>> lengths.append(len(abin))
[250, 250, 250, 250]

That will give you 4 bins with exaactly the same number of events per bin, plus 2 more bins
if needed.

PyPWA.bin_by_range (dataframe, bin_series, number_of bins, lower cut=None, upper_cut=None,
sample_size=None)
Bins a dataframe by range using a series in memory
Bins an input array by range in memory. You must put all data you want binned into the

DataFrame or Structured Array before use. Each resulting bin can be further binned if you
desire.

Parameters

* dataframe (DataFrame or Structured Array) — The dataframe or numpy
array that you wish to break into bins

* bin_series (Array-like) — Data that you want to bin by, selectable by user.
Must have the same length as dataframe. If a column name is provided,
that column will be used from the dataframe.

* number_of_bins (int) — The resulting number of bins that you would like
to have.

* lower_cut (float, optional) — The lower cut off for the dataset, if not
provided it will be set to the smallest value in the bin_series

* upper_cut (float, optional) — The upper cut off for the dataset, if not
provided will be set to the largest value in the bin_series

* sample_size (int, optional) - If provided each bin will have a randomly
selected number of events of length sample_size.

Returns
A list of array-likes that have been masked off of the input bin_series.

Return type
List[DataFrame or Structured Array]

Raises
ValueError — If the length of the input array and bin array don’t match

Warning: This function does all binning in memory, if you are working with a large
dataset that doesn’t fit in memory, or if you overflow while you are binning, you must use
a different binning method

See also:
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PyPWA.libs.file.project
A numerical dataset that supports binning on disk instead of in-memory. It’s slower and
requires more steps to use, but should work even on memory limited systems.

Notes

The range is selected using a simple method:

(max — min) /num, fyins

Examples

Binning a DataFrame with values x, y, and z using z to bin

>>> data = {

>>> "x": npy.random.rand(1000), "y": npy.random.rand(1000),
>>> "z": (npy.random.rand(1000) * 100) - 50
>>>

>>> df = pd.DataFrame(data)
>>> list(df.columns)
[HX”’ ”yH, ”ZH]

This will give us a usable DataFrame, now to make a series out of z and use it to make 10
bins.

>>> binning = df["z"]

>>> range_bins = bin_by_range(df, binning, 10)
>>> len(range_bins)

10

That will give you 10 bins with a very close number of values per bin

PyPWA.bin_by_list(data, bin_series, bin_list)

Bins a dataframe by list of bin limits using a series in memory

Bins an input array by list of bin limits in memory. You must put all data you want binned
into the DataFrame or Structured Array before use. Each resulting bin can be further binned
if you desire.

Parameters

* data (DataFrame or Structured Array) — The dataframe or numpy array
that you wish to break into bins

* bin_series (Array-1like) — Data that you want to bin by, selectable by user.
Must have the same length as dataframe. If a column name is provided,
that column will be used from the dataframe.

e bin_list (list) — The list of bin limits used to create the bins.
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Returns
A list of array-likes that have been masked off of the input bin_series.

Return type
List[DataFrame or Structured Array]

Raises
ValueError — If the length of the input array and bin array don’t match

Warning: This function does all binning in memory, if you are working with a large
dataset that doesn’t fit in memory, or if you overflow while you are binning, you must use
a different binning method

See also:
PyPWA.libs.file.project

A numerical dataset that supports binning on disk instead of in-memory. It’s slower and
requires more steps to use, but should work even on memory limited systems.

Examples

Binning a DataFrame with values x, y, and z using z to bin

First create the list which defines all the bin limits >>> bin_limits = [1,3,7,10]

>>> dataset = {

>>> "x": npy.random.rand(1000), "y": npy.random.rand(1000),
>>> "z": (npy.random.rand(1000) * 100) - 50
>>> }

>>> df = pd.DataFrame(dataset)
>>> list(df.columns)
[”X”, HyH, ”Z”]

This will give us a usable DataFrame, now to make a series out of z and use it to make the 3
defined bins bins.

>>> binning = df["z"]

>>> range_bins = bin_by_list(df, binning, bin_limits)
>>> len(range_bins)

3

That will give you 3 bins with custom bin limits
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8.3 Builtin Vectors

PyPWA includes support for both 3 and 4 vector classes, complete with methods to aid operating
with vector data. Each vector utilizes Numpy for arrays and numerical operations.

class PyPWA.ParticlePool (particle list)
Stores a collection of particles together as a list.

By default the particles are represented as their angles and mass, however internally the
particles are still stored as the Four Momenta.

display_raw()
Display’s the file

property event_count: int
get_event_mass()
get_particles_by_id(particle id)
get_particles_by_name (particle_name)
get_s()

get_t()

get_t_prime()

iter_events()

iter_particles()

property particle_count: int

split(count)
Split’s the particles in N groups.

This is required to be a method on any object that needs to be passed to the processing
module.

Parameters
count (int) — How many ParticlePools to return

Returns
A list of particle pools that can be passed to different process groups.

Return type
List[ParticlePool]

property stored: List[Particle]
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class PyPWA.Particle(particle_id, charge, e, x=None, y=None, z=None)
Numpy backed Particle object for vector operations inside PyPWA.

By default, Particle is represented through the particles angles and mass. However, internally
the particle is stored as four momenta just as it’s stored in the GAMP format.

Parameters

* particle_id (int) — The Particle ID, used to determine the particle’s name
and charge.

* charge (int) — The particle’s Charge as read from the GAMP file.

* e (int, npy.ndarray, float, or DataFrame) — Can be an integer to specify
size, a structured array or DataFrame with x y z and e values, a single float
value, or a Series or single dimensional array, If you provide a float, series,
or array, you need to provide a float for the other options as well.

* x (int, npy.ndarray, float, or DataFrame, optional) —
* y (int, npy.ndarray, float, or DataFrame, optional) —
e z (int, npy.ndarray, float, or DataFrame, optional) -
See also:
FourVector
For storing a FourVector without particle ID
ParticlePool
For storing a collection of particles
property charge: int
Immutable charge for the particle produced from the ID.
display_raw()
Displays the contents of the Particle as Four Momenta

get_copy()
Returns a deep copy of the Particle.

Returns
Copy of the particle.

Return type
Particle

property id: int
Immutable provided ID at initialization.

property name: str
Immutable name for the particle produced from the ID.
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split(count)
Splits the Particle for distributed computing.

Will return N Particles which together will have the same number of elements as the
original Particle.

Parameters
count (int) — The amount of Particles to produce from current particle.

Returns
The list of Particles

Return type
List[Particle]

class PyPWA.FourVector (e, x=None, y=None, z=None)
DataFrame backed FourVector object for vector operations inside PyPWA.

Parameters

* e (int, np.ndarray, float, or DataFrame) — Can be an integer to specify
size, a structured array or DataFrame with x y z and e values, a single float
value, or a Series or single dimensional array, If you provide a float, series,
or array, you need to provide a float for the other options as well.

* x (int, np.ndarray, float, or Series, optional) —
* y (int, np.ndarray, float, or Series, optional) —
* z (int, np.ndarray, float, or Series, optional) —
See also:
ThreeVector
For storing a standard X, Y, Z vector
Particle

For storing a particle, adds support for a particle ID

class PyPWA.ThreeVector (x, y=None, z=None)
DataFrame backed ThreeVector object for vector operations inside PyPWA.

Parameters

* x (int, npy.ndarray, float, or DataFrame) — Can be an integer to specify
size, a structured array or DataFrame with x y and z values, a single float
value, or a Series or single dimensional array, If you provide a float, series,
or array, you need to provide a float for the other options as well.

* y (int, npy.ndarray, float, or DataFrame, optional) —
e z (int, npy.ndarray, float, or DataFrame, optional) —

See also:
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FourVector
For storing a vector with it’s energy.

116 Chapter 8. Working with Data



CHAPTER
NINE

SIMULATION AND FITTING

PyPWA defines both the monte carlo simulation method as well as the several likelihoods. To use
these, the cost function or amplitude needs to be defined in a support object.

9.1

Defining an Amplitude describes how to define a function for use with the simulation and
likelihoods.

Simulating describes the Monte Carlo Simulation methods.

Likelihoods describes the built in likelihoods. These likelihoods also automatically distribute
the fitting function across several processors.

Fitting describes the built in minuit wrapper, as well as how to use the Likelihood objects with
other optimizers.

Defining an Amplitude

Amplitudes or cost functions can be defined for using either an Object Oriented approach, or a
Functional programming approach. If using pure functions for the function, wrap the calculation
function and optional setup function in PyPWA.FunctionalAmplitude, if using the OOP approach,
extend the PyPWA.NestedFunction abstract class when defining the amplitude.

It is assumed by both the Likelihoods and Monte Carlo that the calculate functions of either methods
will return a standard numpy array of final values.

class PyPWA.NestedFunction

Interface for Amplitudes

These objects are used for calculating the users’ amplitude. They’re expected to be initialized
by the time they are sent to the kernel, and will be deep-copied for each process. The setup
will be called first to initialize data and anything else that might need to be done, and then
the calculate function will be called for each call to the likelihood.

Set USE_MP to false to execute on the main thread only, this is best for when using packages
like numexpr that handle multi-threading themselves.

Set USE_TORCH to calculate the likelihood using PyTorch. Assumes that all data returned
from the NestedFunction will be in a Tensor.
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Set USE_THREADS to calculate the likelihood using threads. This is best if the likelihood is
dependent on waiting for responses from hardware or network devices; or if you are working
with data that can not be forked.

Set USE_GPU to calculate the likelihood using GPU. If this is set to true, then USE_MP will
be set to false, and USE_THREADS and USE_TORCH will be set to True internally. This will
raise a RuntimeError if the GPU is not available.

Set DEBUG to True to disable all multiprocessing and threads, this will prevent errors from
being buried in tracebacks.

Warning: If you enable USE_MP and USE_THREADS, then a RuntimeError will be raised,
since Multiprocessing and threads are not compatible.

See also:

FunctionAmplitude
For using the old amplitudes with PyPWA 3

abstract calculate(parameters)
Calculates the amplitude
Parameters

parameters (Dict[str, float]) — The parameters sent to the process by
the optimizer

Returns
The array of results for the amplitude, these will be summed by the likeli-
hood. A tensor is expected when USE_TORCH is true

Return type
npy.ndarray, Series, or Tensor

abstract setup(data)
Sets up the amplitude for use.

This is where the data that will be used for this specific process will be passed to.

Parameters
data (DataFrame or npy.ndarray) — The data that will be used for calcula-
tion

class PyPWA.FunctionAmplitude (setup, processing)

Wrapper for Legacy PyPWA 2.X amplitudes

The old amplitudes were two simple functions that would be passed to the kernels, a single
setup function and a calculate function. Now the amplitudes are objects. This wraps the
functions and presents them as the new Amplitude object

Parameters
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e setup (Callable[[], ] function with no arguments or returns) — The
old setup function that would be used

* processing (Callable[[pd.DataFrame, Dict[str, float]], floatl) —
The old processing function

See also:

NestedFunction
For defining new functions

calculate(parameters)
Calculates the amplitude

Parameters
parameters (Dict[str, float]) — The parameters sent to the process by

the optimizer

Returns
The array of results for the amplitude, these will be summed by the likeli-
hood. A tensor is expected when USE_TORCH is true

Return type
npy.ndarray, Series, or Tensor

setup(data)
Sets up the amplitude for use.

This is where the data that will be used for this specific process will be passed to.

Parameters
data (DataFrame or npy.ndarray) — The data that will be used for calcula-

tion

9.2 Simulating

There are two choices when using the Monte Carlo Simulation method defined in PyPWA: Simula-
tion in one pass producing the rejection list, or simulation in two passes to produce the intensities
and finally the rejection list. Both methods will take advantage of SMP where available.

* If doing a single pass, just use the PyPWA.monte_carlo_simulation function. This will take the
fitting function defined from Defining an Amplitude along with the data, and return a single
rejection list.

* If doing two passes for more control over when the intensities and rejection list, use both
PyPWA.simulate.process_user_function to calculate the intensity and local max value, and
PyPWA.simulate.make_rejection_list to take the global max value and local intensity to pro-
duce the local rejection list.
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PyPWA.monte_carlo_simulation(amplitude, data, params=None, processes=2)

Produces the rejection list This takes a user defined intensity object along with it’s associated
data, and generates a pass/fail array to be used to mask any dataset of the same length as
data.

Parameters

e amplitude (Amplitude derived from AbstractAmplitude) — A user defined
amplitude or pre-made PyPWA amplitude that you wish to carve your data
with.

e data (Structured Array, DataFrame, or BaseFolder from Project) — This
is the data you want to be passed to the setup function of your amplitude.
If you provide a Structured Array or DataFrame the entire calculation will
occur in memory with the selected number of processes. If you provide a
Project BaseFolder the calculation will rely entirely on the Amplitude.

* params (Dict[str, float], optional) — An optional dictionary of param-
eters that will be passed to the AbstractAmplitude’s calculate function.

* processes (int, optional) — Selects the number of processes to run with,
defaults to the number of processes detected through multiprocessing

Returns
A masking array that can be used with any DataFrame or Structured Array to
cut the events to the generated shape

Return type
boolean npy.ndarray

Raises
ValueError — If the data is not understood. If you received this, check your
data to ensure its a supported type

Examples

How to cut your data with results from monte carlo_simulation

>>> rejection = monte_carlo_simulation(Amplitude(), data)
>>> carved = datal[rejection]

PyPWA.simulate.process_user_function(amplitude, data, params=None, processes=2)
Produces an array of values for the calculated function.

Parameters

* amplitude (Amplitude derived from AbstractAmplitude) — A user defined
amplitude or pre-made PyPWA amplitude that you wish to carve your data
with.

e data (Structured Array, DataFrame, or BaseFolder from Project) — This
is the data you want to be passed to the setup function of your amplitude.
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If you provide a Structured Array or DataFrame the entire calculation will
occur in memory with the selected number of processes. If you provide a
Project BaseFolder the calculation will rely entirely on the Amplitude.

* params (Dict[str, float], optional) — An optional dictionary of param-
eters that will be passed to the AbstractAmplitude’s calculate function.

* processes (int, optional) — Selects the number of processes to run with,
defaults to the number of processes detected through multiprocessing

Returns
The final values computed from the user’s function and the max value com-
puted for that dataset.

Return type
(float npy.ndarray, float)

Raises
ValueError — If the data is not understood. If you received this, check your
data to ensure its a supported type

PyPWA.simulate.make_rejection_list (intensities, max value)

Produces the rejection list from pre-calculated function values. Uses the values returned by
process_user_function.

Parameters

e intensities (Numpy array or Pandas Series) — This is a single dimen-
sional array containing the final values for the user’s function.

* max_value (List, Tuple, Set, nd.ndarray, or float) — The max value
for the entire dataset, or list of all the max values from each dataset. Only
the largest value from the list will be used.

Returns
A masking array that can be used with any DataFrame or Structured Array to
cut the events to the generated shape

Return type
boolean npy.ndarray

9.3 Likelihoods

PyPWA supports 3 unique likelihood types for use with either the Minuit wrapper or any optimizer
that expects a function. All likelihoods have built in support for SMP when they’re called, and
require to be closed when no longer needed.

* PyPWA.LogLikelihood defines the likelihood, and works with either the standard log likeli-
hood, the binned log likelihood, or the extended log likelihood.

* PyPWA.ChiSquared defines the ChiSquared method, supporting both the binned and standard
ChiSquare.
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* PyPWA.EmptyLikelihood does no post operation on the final values except sum the array and

return the final sum. This allows for defining unique likelihoods that have not already been
defined, fitting functions that do not require a likelihood, or using the builtin multi processing
without the weight of a standard likelihood.

class PyPWA.LogLikelihood(amplitude, data, monte carlo=None, binned=None,

quality factor=None, generated_length=1, is_minimizer="True,
num_of processes=2)

Computes the log likelihood with a given amplitude.

To use the standard log likelihood, you only need to provide data, If binned and quality factor
are not provided, they will default to 1. If you wish to use the Extended Log Likelihood,
you must provide monte carlo data. The generated length will be set to the length of the
monte_carlo, unless a generated length is provided.

Parameters

* amplitude (AbstractAmplitude) — Either an user defined amplitude, or an
amplitude from PyPWA

* data (DataFrame or npy.ndarray) — Data that will be passed directly to the
amplitude

* monte_carlo (DataFrame or npy.ndarray, optional) — Data that will be
passed to the monte_carlo

* binned (Series or npy.ndarray, optional) — Array with bin values. This
won’t be used if monte_carlo is provided.

e quality_factor (Series or npy.ndarray, optional) — Array with quality
factor values

e generated_length (int, optional) — The generated length of values
for use with the monte carlo, this value will default to the length of
monte_carlo

* is_minimizer (bool, optional) — Specify if the final value of the likelihood
should be multiplied by -1. Defaults to True.

* num_of_processes (int, optional) — How many processes to be used to
calculate the amplitude. Defaults to the number of threads available on the
machine. If USE_MP is set to false or this is set to zero, no extra processes
will be spawned
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Notes
Standard Log-Likelihood. If not provided, @y and binned will be set to 1:

L= Z Qy - binned - log(Amp(data))

Extended Log-Likelihood. If not provided, the Q f will be set to 1, and generated length will
be set to len(monte_carlo)

1

L= -log(Amp(data)) —
ZQf og(Amp(data)) generated_lengt

. Z Amp(monte_carlo)

close()

Closes the likelihood This needs to be called after you’re done with the likelihood, UN-
LESS, you created the likelihood using the with statement

class PyPWA.ChiSquared(amplitude, data, binned=None, event errors=None,
expected_values=None, is_minimizer="True, num_of processes=2)
Computes the Chi-Squared Likelihood with a given amplitude.

This likelihood supports two different types of the ChiSquared, one with binned or one with
expected values.

To use the binned ChiSquared, you need to provide data and binned values, to use the ex-
pected values, you need to provide data, event_errors, and expected values.

Parameters

* amplitude (AbstractAmplitude) — Either an user defined amplitude, or an
amplitude from PyPWA

* data (DataFrame or npy.ndarray) — The data that will be passed directly
to the amplitude

* binned (Series or npy.ndarray, optional) — The array of bin values,
should be the same length as data

* event_errors (Series or npy.ndarray, optional) — The array of errors,
should be the same length as data

e expected_values (Series or npy.ndarray, optional) — The array of ex-
pected values, should be the same length as data

e is_minimizer (bool, optional) — Specify if the final value of the likelihood
should be multiplied by -1. Defaults to True.

* num_of_processes (int, optional) — How many processes to be used to
calculate the amplitude. Defaults to the number of threads available on the
machine. If USE_MP is set to false or this is set to zero, no extra processes
will be spawned

Raises
ValueError — If binned values or expected/errors are not provided
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Notes

Binned ChiSquare:

5 (Amp(data) — binned)?

binned

Expected values:

5 (Amp(data) — expected)?

Eerrors

close()
Closes the likelihood This needs to be called after you're done with the likelihood, Un-
less , you created the likelihood using the with statement
class PyPWA.EmptyLikelihood(amplitude, data, num_of processes=2)
Provides the multiprocessing benefits of a standard likelihood without a defined likelihood.

This allows you to include a likelihood into your amplitude or to run your amplitude without
a likelihood entirely.

amplitude
Either an user defined amplitude, or an amplitude from PyPWA
Type
AbstractAmplitude
data
The data that will be passed directly to the amplitude
Type
DataFrame or npy.ndarray
num_of_processes

How many processes to be used to calculate the amplitude. Defaults to the number of
threads available on the machine. If USE_MP is set to false or this is set to zero, no extra
processes will be spawned

Type
int, optional
close()

Closes the likelihood This needs to be called after you’re done with the likelihood, UN-
LESS, you created the likelihood using the with statement
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9.4 Fitting

PyPWA supplies a single wrapper around iMinuit’s module. This is a convenience function to make
working with Minuit’s parameters easier. However, if wanting to use a different fitting function,
like Scikit or Scipy, the likelihoods should work natively with them.

Most optimizers built in Python assume the data is some sort of global variable, and the function
passed to them is just accepting parameters to fit against. The Likelihoods take advantage of this
by wrapping the data and the defined functions a wrapper that attempts to scale the function to
several processors, while providing function-like capabilities by taking advantage of Python’s builtin
__call__ magic function.

This should allow the likelihoods to work with any optimizer, as long as they’re expecting a function
or callable object, and as long as the parameters they pass are pickle-able.

PyPWA.minuit (settings, likelihood)
Optimization using iminuit
Parameters

e settings (Dict[str, Anyl) — The settings to be passed to iminuit. Look
into the documentation for iminuit for specifics

e likelihood (Likelihood object from likelihoods or single function)

Returns
The minuit object after the fit has been completed.

Return type
iminuit.Minuit

Note: See Iminuit’s documentation for more imformation, as it should explain the various
options that can be passed to iminuit, and how to use the resulting object after a fit has been
completed.
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CHAPTER
TEN

PLOTTING

As an attempt to make plotting in Python easier, we are building a plotting library that attempts to
solve the more specific plotting needs when working with high energy physics. The first plotting
tool we have is to reproduce ROOT’s LEGO plot, but more will come in the future.

PyPWA.make_lego(x data, y data, bins=None, cmap='jet', ax=None, elev=10, azim=215)

Produces a 3D Lego plot, similar to what is produced by ROOT. This is similar to a 2D His-
togram, but treats x and y as x and z, and projects the occurrences into the y dimension.

Parameters
* x_data (ndarray or Series) — X data for the lego plot
* y_data (ndarray or Series) —Y data for the lego plot

* bins (int, optional) — Number of bins to create when making the lego
plot.

* cmap (str or matplotlib.colors.ListedColormap, optional) — cmap to
use when creating the lego plot. It takes either a string of the name for
matplotlib, or a matplotlib cmap

* ax (Axes3D, optional) — An axes object to place the lego plot into. The axes
must be an axes that supports 3d projection or it will cause the function to
error.

* elev (int, optional) — Adjusts the elevation of the lego-plot

* azim (int, optional) — Adjusts the azimuth of the resulting image. It’s
value is a angle between 0 and 360 degrees.

Returns
The axes object of the plot

Return type
Axes3D
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Notes

If the number of bins isn’t provided, it’s instead calculated using one half of Sturge’s Rule
rounded up:

[(1/2)(1 4 3.322 - log(Nevents) |
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