

PyPWA

Partial Wave Analysis done right.

PyPWA is a Python partial wave analysis package that utilizes Numpy,
iminuit, and PyTables to provide a high speed analysis framework that
strives to help you get your work done without getting in your way.

It’s a package that can be used either as a standalone program inside
your terminal, or as Python script or Jupyter Notebook, whatever your
preference may be.

You can take a look at our code directly
here [https://github.com/JeffersonLab/PyPWA]

About

The PyPWA Project aims to develop a software framework that can be used to
perform parametric model fitting to data. In particular, Partial Wave and
Amplitude Analysis (PWA) of multiparticle final states. PyPWA is designed
for photoproduction experiments using linearly polarized photon beams. The
software makes use of the resources at the JLab Scientific Computer Center
(Linux farm). PyPWA extract model parameters from data by performing
extended likelihood fits. Two versions of the software are develop: one
where general amplitudes (or any parametric model) can be used in the fit
and simulation of data, and a second where the framework starts with a
specific realization of the Isobar model, including extensions to
Deck-type and baryon vertices corrections.

Tutorials (Step-by-step instructions) leading to a full fit of data and
the use of simulation software are included. Most of the code is in Python, but
hybrid code (in Cython or Fortran) has been used when appropriate.
Scripting to make use of vectorization and parallel coprocessors
(Xeon-Phi and/or GPUs) are expected in the near future. The goal of this
software framework is to create a user friendly environment for the
spectroscopic analysis of linear polarized photoproduction experiments.
The PyPWA Project software expects to be in a continue flow
(of improvements!), therefore, please check on the more recent software
download version.

What can PyPWA do?

	Likelihood fitting with ChiSquared and Log Likelihood

	Simulation using the Monte-Carlo Rejection Sampling method

	Multi-variable binning for 4 vector particle data (in GAMP Format)

	Convert and mask data between similar data types

	Load data into an HDF5 dataset

Further Reading

	iMinuit [https://iminuit.readthedocs.io/en/latest/index.html]

	Nestle [http://kylebarbary.com/nestle/]

	PyTables (HDF5) [https://www.pytables.org/index.html]

Team Members

Current PyPWA Team members

	Dr. Carlos Salgado [https://github.com/cwsalgado] Norfolk State University

	Dr. Will Phelps [https://github.com/wphelps] Christopher Newport University

	Mark Jones [https://github.com/Markjonestx] VPCC and Old Dominion University

	Dr. Peter Hurck [https://github.com/s6pepaul] University of Glasgow

Previous PyPWA Team members

	Brandon DeMello [https://github.com/bdell] Old Dominion University

	Stephanie Bramlett [https://github.com/skbramlett] William and Mary

	Josh Pond [https://github.com/JTPond] Virginia Peninsula Community College (VPCC)

	LaRay Hare [https://github.com/lmhare] Norfolk State University

	Christopher Banks [https://github.com/cjbanks] Norfolk State University

	Michael Harris Jr [http://github.com/MichaelHarrisJr] Norfolk State University

High School Interns

	Ryan Wright [https://github.com/painballking] Hampton Governor’s School for Science and Technology

	Ran Amplitude benchmarks on the XeonPhi

Citations

	Roger Barlow. Extended maximum likelihood. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 297(3):496–506, 1990.

	Ph R BEVINGTON. Data reduction and error analysis for the physical sciences. Technical Report, McGraw-Hill, 1969.

	Suh Urk Chung. Spin formalisms. Technical Report, CERN, 1971.

	WT Eadie, D Drijard, FE James, M Roos, and B Sadoulet. Statistical methods in experimental physics, 2nd reprint. 1982.

	M Jacob and Gr C Wick. On the general theory of collisions for particles with spin. Annals of Physics, 7(4):404–428, 1959.

	F James. Minuit reference manual, cern program library long writeup d506. James and M. Winkler, MINUIT User’s Guide, CERN, 1994.

	Fred James, Matthias Winkler, and others. Minuit user’s guide. MIGRAD CERN, 2004.

	David JC MacKay and David JC Mac Kay. Information theory, inference and learning algorithms. Cambridge university press, 2003.

	J Orear. Notes on statistics for physicists (1958). UCRL-8417, 1982.

	Carlos W Salgado and Dennis P Weygand. On the partial-wave analysis of mesonic resonances decaying to multiparticle final states produced by polarized photons. Physics Reports, 537(1):1–58, 2014.

	K Schilling, P Seyboth, and G Wolf. On the analysis of vector-meson production by polarized photons. Nuclear Physics B, 15(2):397–412, 1970.

	John Skilling. Nested sampling. In AIP Conference Proceedings, volume 735, 395–405. AIP, 2004.

	Charles Zemach. Use of angular-momentum tensors. Physical Review, 140(1B):B97, 1965.

Installation

PyPWA can be installed with pip or conda with Python 3.7 or newer

Conda

Thanks to tools provided by Anaconda, you can easily install PyPWA and all
it’s dependencies with a simple one line command. Check out Anaconda’s
user guide [https://docs.anaconda.com/anaconda/user-guide/] if you’re
new to using Anaconda.

conda install -c markjonestx pypwa

If you want tools from PWA2000 (GAMP, HGAMP, VAMP, PPGEN) we’ve included them
as well

Note

PWA2000 is currently only available on Linux installs of Anaconda.

conda install -c markjonesyx pwa2000

Pip

Warning

Pip can interfere with your system python. Make sure to never run
pip as root, and only perform local installs.

Fetch the latest version of PyPWA and install locally

Note

If you are using pip somewhere behind a firewall, you may need to
pin pip’s servers using
pip install --trusted-host pypi.org --trusted-host pythonhosted.org

git clone --depth=1 https://github.com/JeffersonLab/PyPWA.git
cd PyPWA
pip install --local .

Changelog

All changes important to the user will be documented in this file.

The format is based on Keep a Changelog [http://keepachangelog.com/]
and this project adheres to Semantic Versioning [http://semver.org/]

Unreleased [https://github.com/JeffersonLab/PyPWA/compare/v3.3.0...main]

Added

Changed

Removed

Fixed

4.0.0 [https://github.com/JeffersonLab/PyPWA/compare/v3.4.0...v.4.0.0] - 2022-10-11

Added

	Anaconda environments. There are two anaconda environments included
inside the source folder at the moment. anaconda-environment.yml and
dev-environment.yml. These should provide a nice starting point for
anyone wanting to work on or with PyPWA. Pull requests are welcomed
if you think a package should be added to the base environment.

	Added PyTorch for GPU and Apple Metal support. Can be specified during
install using pip install pypwa[torch]. Amplitude support is specified
by setting the USE_TORCH flag to True.

	Added support for Python’s Multithreading. You should only use this when
computation is happening on separate nodes and/or your optimizer choice
does not support passing it’s values across an OS Pipe.

	Added support for Minuit’s parameter array argument. Now amplitudes can
be written to accept a single array containing all the array values.

	Debugging support for amplitudes is now explicit. You can set the DEBUG
flag to True on your amplitude before simulation or fitting, and it’ll run
in the main process so traceback and errors will not be suppressed.

	Amplitudes can now know where they live. Amplitudes have a THREAD flag
that is numbered from 0 to N-threads that will specify which thread the
amplitude is running in. This is useful if you want to pair your
processes/threads with external devices like GPUs or OpenMPI nodes.

Changed

	Data module will no longer bury the Cache object. The cache object will
now reside in the same directory as the parsed data.

	Moves Emcee to an optional dependency so that PyPWA can function in a
base anaconda environment. If Emcee is installed, or if emcee is
specified during installation using pip install pypwa[emcee], the
emcee functionality will be usable.

	iMinuit has changed their ABI entirely, so the iminuit function has
been changed to adapt to the new ABI.

	Updated all dependencies around ReadTheDocs to avoid GitHub flagging
the dependencies for exploits.

Removed

	Project manager. There were several bugs throughout the module, and as
far as we are aware, no users using the module. If you’re affected by
this change, please open an issue in the issue tracker to let us know.

	Removed the command line Binning utility. The Jupyter-based and
internal binning utilities remain unaffected. If this affects you,
please open an issue.

	Removed appdirs as a dependency.

	Removed CuPy support, replaced by PyTorch.

	Removed PyYaml Configuration support.

Fixed

	The bin by range function was not sampling data correctly. The intended
behaviour was for each bin to be sampled by N samples, and then those
samples to be shuffled to add randomization. However, because the
shuffling was improperly implemented, what would occur instead is a single
random event would be dropped from the sample, and then returned. This
no longer occurs, and the returned bins will now be the correct length,
and will be correctly shuffled.

3.4.0 [https://github.com/JeffersonLab/PyPWA/compare/v3.3.0...v.3.4.0] - 2021-7-23

Added

	Peter’s emcee wrapper, available at PyPWA.mcmc

Changed

	System tests are now located in tests/system_tests

	PyMask will now return exit values on call

Removed

	PySimulate has been removed since it was limited in use, and it’s
functionality has been consumed by the PyPWA scripting libs.

3.3.0 [https://github.com/JeffersonLab/PyPWA/compare/v3.2.3...v.3.3.0] - 2021-6-20

Added

	2D Gauss introductory tutorial to the documentation

	CuPy support for Likelihoods and Simulation. This means we now officially
support NVIDIA GPU acceleration, however for now it is limited to a single
GPU. If there is enough demand for this to be expanded on, support for
multiple GPUs will be added.

Changed

	Particle now requires a charge to be supplied during the creation of the
object. GAMP has also been modified to support the Charge being passed
through to the Particle

	Depreciated internal options that were passed to Minuit have been
replaced with the modern alternatives.

Fixed

	Likelihoods were spawning multiple processes even when USE_MP was set
to false. This has been corrected, and will avoid spawning extra
processes as it was intended.

3.2.3 [https://github.com/JeffersonLab/PyPWA/compare/v3.2.2...v.3.2.3] - 2021-6-11

Added

	Particle Pools can now compared against other Particle Pools to see if they
are storing the same content.

Fixed

	Regression from 3.2.0 where Gamp would not write out data to disk. This time
by wrapping the data in a float, which should catch instances where the value
stored is a pure scalar, verses instances where the data is an array with a
len == 1

3.2.2 [https://github.com/JeffersonLab/PyPWA/compare/v3.2.1...3.2.2] - 2021-6-11

Fixed

	Particles can now be masked again, the mask is no longer silently deleted
when passed to the object.

	Numpy’s warning about numpy.float being deprecation should be resolved.

	Any warnings about the LaTeX in the Likelihood’s Docstrings being
deprecated should be resolved as well.

3.2.1 [https://github.com/JeffersonLab/PyPWA/compare/v3.2.0...v3.2.1] - 2021-6-10

Fixed

	Gamp no longer combines particles with the same ID

	Fixed issue where display_raw would fail in Jupyter with Particles

3.2.0 [https://github.com/JeffersonLab/PyPWA/compare/v3.1.0...v3.2.0] - 2021-6-1

Added

	Vectors now support iPython and Jupyter Pretty printing

Changed

	Vector sanitization function has improved handling of non-array inputs

Fixed

	FourVectors variable order is now in the correct order

	Vectors now work with inputs that aren’t arrays

	Patched issue with GAMP failing to write to file

3.1.0 [https://github.com/JeffersonLab/PyPWA/compare/v3.0.0...v3.1.0] - 2020-10-2

Added

	Helper functions pwa.pandas_to_numpy to convert Pandas data types to
Numpy Structured Arrays, and pwa.to_contiguous to convert DataFrames
and Structured Arrays columns to contiguous arrays for quicker
processing and C/Fortran Support

	New experimental file format ParticleGZ, a direct-to-memory file format
using pickle, csv, and Tar/GZ to compress data into a single archive for
easy use.

	Reference documentation to the Read The Docs for the various modules
in PyPWA.

	Initial examples section added.

Changed

	Users now have to option to request structured Numpy arrays or Pandas
DataFrames from pwa.read and pwa.get_reader

	pwa.cache now defaults to intermediate caching, and has to be disabled
for use with caching files

	Vectors str and repr field now output the mean of their theta, phi, as well
as particle id and mass if they are available.

	Vectors now wrap individual numpy arrays instead of a single structured
array or DataFrame. This was done to improve performance of the vector
as well as to make it C contiguous.

Fixed

	pwa.write would fail to write CSV Numpy Arrays

	pwa.write would occasionally fail to detect DataFrames

	Vectors would occasionally replace their fields with just their x values.

3.0.0 [https://github.com/JeffersonLab/PyPWA/compare/v3.0.0a1...v3.0.0] - 2020-6-4

Added

	ProjectDatabase has been added handle large data manipulation on disk
instead of in memory.

	Reader/Writer now share path of the file being operated on.

	Binning now works in both fixed count and ranges, and can be done
entirely in memory.

	Initial Jupyter and IPython support.

	Adding lego plotting.

	Likelihoods are now standalone objects that can be combined with any
optimizer.

	Resonance support now builtin using DataFrames as a backbone.
Resonances are now saved as a two sheet excel file, and can be modified
using the supplied wave and resonance objects.

	Adds support for Numexpr to accelerate computation.

	Simulation can be done as two separate parts through PyPWA.simulate

	Github Templates to help users and developers contribute to PyPWA

Changed

	Separate release tag from version info

	Package info is now stored in PyPWA.info

	pydata has officially been updated to PyPWA 3.0.

	Structured Arrays have been replaces for Pandas DataFrames in some
cases. Vectors still based on numpy arrays to maintain performance.

	Reactions have been merged into ParticlePool.

	Vectors have been simplified to be easier to test while still being
powerful to use.

	ProcessInterfaces now must be closed after use. This includes all
Likelihood objects.

	pwa.data has been refactored to be easier to be completely usable by
itself.

Removed

	SlotTable has been removed in favor of Project. Both use PyTables
for the backend.

	Unsupported Python versions removed from package’s classifiers.

Fixed

	GAMP no longer claims that it can read PF files.

	Cache will correctly report invalid when it’s contents differ from the
source file.

	monte_carlo_simulation and likelihoods now correctly handle exceptions
that occur in the child processes.

	Pipes are correctly closed now.

	Extended Log-likelihood is now correctly calculated

	Sv Writer will now write data.

	Kv Reader will now read data.

3.0.0a1 [https://github.com/JeffersonLab/PyPWA/compare/v2.2.1...v3.0.0a1] - 2019-6-17

Added

	Added numpy reader and writer.

	Adds a helper script to clean the project directory of caches.

	Adds initial documentation for PyPWA.

	Added support for 3 Vectors, 4 Vectors, and Particles

	Added ParticlePool to aid in working with multiple Particles

	Added a binning utility that supports multiple binning variables and
dimensions

	Added PyTables support, so that large datasets can be easily managed

Changed

	All program names have been lowercased

	Configuration package has been compressed into a single module

	PySimulate now is a library that has no UI, and has a UI portion
that exclusively works with interfacing

	Fuzzywuzzy is now optional

	Process package is now a single module. Interface no longer uses
IS_DUPLEX

	Bulk of program functionality moved to libs, progs being just for UI

	Builtin Plugins moved to libs, old plugin’s plugins have still reside
in plugins, but under a package with the appropriate name. I.E. data
plugins are in plugins/data.

	All file related libs have been moved to libs/file

	Combined optimizers with fit library

	GAMP was updated to use Particles and ParticlePool

	Files with extra newline should parse correctly now

	CSV and TSV files will be lf instead of crlf on linux systems now

Removed

	Nestle Minimization. There is currently no clear way to have Minuit and
Nestle to operate with each other nicely. Implementation for multiple
optimizers will remain, as well as new associated issues created.

	Removed support for all version of Python before 3.7

2.2.1 [https://github.com/JeffersonLab/PyPWA/compare/v2.2.0...v2.2.1] - 2017-10-16

Fixed

	Setup would pull in unstable Yaml parser

2.2.0 [https://github.com/JeffersonLab/PyPWA/compare/v2.1.0...v2.2.0] - 2017-7-26

Added

	Process Plugin support for List Data

	Adds Exception handling to Processes

	PyMask support for multiple masking files.

	PyFit will now filter out events if the Bin value is 0

	The user can AND, OR, or XOR masks together with PyMask

Changed

	Removed previous_event from Process Interface

	Duplex Pipes are used over Simplex Pipes for Duplex Processes

	Changes get_file_length to using a binary buffered search.

	Moved PyPWA.core.shared to PyPWA.libs

	Split interface’s plugins and internals to their own separate file based
on the interfaces purpose.

	PyFit no longer assumes bins are named 'BinN' you must specify Bin
names in 'internal data'.

	Multiplier effect for the Minimizers has been moved to the individual
likelihoods.

	PyMask defaults to AND operations instead of OR now.

Fixed

	PyFit will now shutdown correctly when killed with Ctrl-C or other
interrupt.

	The ChiSquared will no longer be multiplied by -1 when being minimized.

	Data Parser’s Cache would crash on very large files.

2.1.0 [https://github.com/JeffersonLab/PyPWA/compare/v2.0.0...v2.1.0] - 2017-6-30

Added

	Argument Parser for simple programs where a configuration file would be
unneeded overhead for the user.

	Numpy Data support for single arrays and pass fail files.

	Data Plugin now has two array types, Single Array and Columned Array

	Memory and Iterator objects now imported into PyPWA

	Iterators report length now

	Masking utility PyMask to mask and translate data

Changed

	Plugin Loader now returns initialized objects

	Renamed shell to progs

	Moved all shell related items into a package called shell inside progs

	Renamed CHANGELOG.mg to CHANGELOG.md

	Renamed ‘blank shell module’ to ‘blank program module’

	Removed support for boolean and float arrays from EVIL Parser

	Renamed internal GAMP type to Tree type

	Split flat data into Columned data and standard arrays

Fixed

	ChiSquare and Empty likelihoods are now actually usable

	setup.py would fail on setuptools versions < 20

2.0.0 [https://github.com/JeffersonLab/PyPWA/compare/v1.1...v2.0.0] - 2017-6-5

Added

	Plugin Subsystem

	Configurator Subsystem

	Data Plugin

	SV Plugin

	EVIL Plugin

	GAMP Plugin

	Data Caching

	Processing Plugin

	iMinuit plugin

	Nestle likelihood

	PyFit plugin

	Log Likelihood Plugin

	Chi-Squared Likelihood

	PySim plugin

	Packaging

Intro to PyPWA with the 2D Gauss

The goal with this little tutorial is to walk through how those PyPWA and its collective features.

Note: Multiproccessing is done automatically when it’s selected. However, if you have some direct C/C++ code dependency in your Function on called in your class’s __init__, you will encounter issues. This is why each object has a setup function- To initialize Fortran and C++ dependencies there.

[1]:

import numpy as np # Vectorization and arrays
import pandas as pd # A powerful data science toolkit
import numexpr as ne # A threaded accelerator for numpy

import PyPWA as pwa
from IPython.display import display

/home/mark/.anaconda3_install/envs/PyPWA/lib/python3.10/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
 from .autonotebook import tqdm as notebook_tqdm

There are 3 different supported ways to define your kernel/amplitude in PyPWA. - Using multiprocessing: Write your kernel using Numpy and include any externally compiled code the setup method. This is the default kernel, and will result in your kernel being deployed in parallel across all threads on the host system. - Using Numexpr to use hardware threads and low level vectorization to further accelerate Numpy. There is some benefit to running Numexpr on less cores than traditional Numpy, but
largely you can treat Numexpr the same as the above. - Using Torch to compute the Kernel. This will allow you to take advantage of Metal on Apple PCs, or CUDA GPUs on Linux machines. However, to utilize CUDA, you must disable Multiprocessing. At this time, CUDA does not support the main process being forked.

[2]:

class Gauss2dAmplitude(pwa.NestedFunction):
 """
 This is a simple 2D Gauss, but built to use PyPWA's builtin
 multiprocessing module. For you, you don't need to worry about thread or
 process management, how to pass data between threads, or any of the other
 hassles that come with multithreading.

 Instead, you just define your class while extending the NestedFunction,
 and when you pass it to the fitter or the simulator, it'll clone your
 class, split your data, and deploy to every processing thread your
 machine has.
 """

 def __init__(self):
 """
 You can override the init function if you need to set parameters
 before the amplitude is passed to the likelihood or simulation
 functions. You can see an example of this with the JPAC amplitude
 included in the other tutorials. However, you must remember
 to always call the `super` function if you do this.
 """
 super(Gauss2dAmplitude, self).__init__()

 def setup(self, array):
 """
 This function is where your data is passes too. Here you can also
 load any C or Fortran external libraries that typically would not
 support being packaged in Python's object pickles.
 """
 self.__x = array["x"]
 self.__y = array["y"]

 def calculate(self, params):
 """
 This function receives the parameters from the minimizer, and
 returns the values from there. Only the amplitude values should
 be calculated here. The likelihood will be calculated elsewhere.
 """
 scaling = 1 / (params["A2"] * params["A4"])
 left = ((self.__x - params["A1"])**2)/(params["A2"]**2)
 right = ((self.__y - params["A3"])**2)/(params["A4"]**2)
 return scaling * np.exp(-(left + right))

[3]:

class NeGauss2dAmplitude(pwa.NestedFunction):
 """
 This is the same Gauss as above, but instead of using raw numpy, it
 uses numexpr, a hyper vectorized, multithreading, numerical package that
 should accelerate the calculation of your data.

 USE_MP defaults to True, but you should consider setting it to false.
 Numexpr will do some partial multithreading on its own for its
 calculations, however any part of your algorithm that is defined outside
 Numexpr will not benefit from Numexpr. Due to this, there is an optimum
 number of threads for amplitudes with Numexpr that range from 2 threads
 to around 80% of the system threads. A good starting point is around
 50% of the CPU threads available.
 """

 USE_MP = False

 def setup(self, array):
 self.__data = array

 def calculate(self, params):
 return ne.evaluate(
 "(1/(a2*a4)) * exp(-((((x-a1)**2)/(a2**2))+(((y-a3)**2)/(a4**2))))",
 local_dict={
 "a1": params["A1"], "a2": params["A2"],
 "a3": params["A3"], "a4": params["A4"],
 "x": self.__data["x"], "y": self.__data["y"]
 }
)

[4]:

import torch as tc

class TorchGauss2dAmplitude(pwa.NestedFunction):
 """
 Finally, this is the Torch version of the Gauss2D.

 To utilize Torch, the USE_TORCH flag must be set to True, or the
 likelihood will assume that the results will be in standard Numpy
 arrays, and not Torch Tensors.

 Torch affords us some features that Numpy does not. Specifically,
 support for both Apple's Metal Acceleration, and CUDA Acceleration.
 For Apple's Metal, there is no work required further than defining
 your amplitude in Torch due to the shared memory on Apple systems.
 To utilize CUDA, however, you must move the data to the GPU before
 the GPU can accelerate the operations. Because of the nature of
 CUDA, CUDA and Multiprocessing are not compatible, so you must
 disable multiprocessing when using CUDA.

 WARNING You **MUST** set USE_MP to False if you are using
 CUDA as a Torch Device!
 """

 USE_TORCH = True
 USE_MP = False

 # device is not a flag for Amplitude, but we use it track the current
 # device that the amplitude should run on.
 device = ... # type: tc.device

 def setup(self, array):
 # We want to always set the current device. It also helps to be able
 # to toggle GPU on and off for the entire amplitude using the USE_MP,
 # flag since the flag can be set after initialization.
 if self.USE_MP:
 self.device = tc.device("cpu")
 else:
 self.device = tc.device("cuda:0")

 # Since the data is in Pandas, we need to map it to Numpy first
 narray = pwa.pandas_to_numpy(array)

 self.__x = tc.from_numpy(narray["x"]).to(self.device)
 self.__y = tc.from_numpy(narray["y"]).to(self.device)

 def calculate(self, params):
 scaling = 1 / (params["A2"] * params["A4"])
 left = ((self.__x - params["A1"])**2)/(params["A2"]**2)
 right = ((self.__y - params["A3"])**2)/(params["A4"]**2)
 return scaling * tc.exp(-(left + right))

Using caching for intermediate steps

PyPWA’s caching module supports caching intermediate steps. The advantage of using the caching module is that saving and loading values is fast; much faster than almost any other solution, and supports almost anything you can store in a variable.

PyPWA.cache has two functions in it, read and write. You can save almost anything in the cache: lists, DataFrames, dictionary’s, etc. There is a chance that it won’t save the value if the data isn’t serializable into a pickle, and it may not be compatible between different versions of python, so I don’t recommend using this for data that you can’t reproduce. However, if you need to do some feature engineering, or data sanitizing, before you can use the data in whatever way you need and
want to keep that data around to speed up future executions, this module will make your life a touch easier.

Below, I created a large flat DataFrame, and then binned that DataFrame into 10 bins, each with 1,000,000 events in them. Then, I saved those results into a cache object that will appear in the current working directory with the name “flat_data.intermediate”.

	pwa.read returns two values, the first is a boolean that is True only if it was able to read the pickle, and the second is the parsed data, which will be None if it was unable to parse anything from the file, or the file doesn’t exist.

	pwa.write has no returns, but does write the data out in Pickle format to the provided filename + the “.intermediate” extension.

[5]:

valid_cache, binned_flat = pwa.cache.read("flat_data")
if not valid_cache:
 flat_data = pd.DataFrame()
 flat_data["x"] = np.random.rand(10_000_000) * 20
 flat_data["y"] = np.random.rand(10_000_000) * 20
 flat_data["binning"] = np.random.rand(10_000_000) * 20
 binned_flat = pwa.bin_with_fixed_widths(flat_data, "binning", 1_000_000)
 pwa.cache.write("flat_data", binned_flat)

Simulation with bins

Simulation can be run as a whole system, you simply provide the function and data, and it’ll return the masked values, or you can run the two steps independently, with the first step returning the intensities, and the second returning the masks. When your working with a single dataset, running it as a single step make sense, however if you bin your data, then running it as two steps is better so that all bins are masked against the same max value of the intensity.

	pwa.simulate.process_user_function takes all the same arguments as pwa.monte_carlo_simulation so it can be a drop in replacement. The difference is that this function will return the final values for the user’s function and the max value.

	pwa.simulate.make_rejection_list takes the final values and either a single max value, or a list or array of max values, and it’ll use the largest max value. This function will return the same value as pwa.monte_carlo_simulation

Below, I iterate over the bins and produce the final values and max value for each bin and store them in their own lists.

[6]:

simulation_params = {
 "A1": 10, "A2": 3,
 "A3": 10, "A4": 3
}

final_values = []
max_values = []
for fixed_bin in binned_flat:
 final, m = pwa.simulate.process_user_function(
 TorchGauss2dAmplitude(), fixed_bin, simulation_params
)
 final_values.append(final)
 max_values.append(m)

pwa.cache.write("final_values", max_values)

After the final values have been produced, I use pwa.simulate.make_rejection_list to reject events from each bin, and then store the new carved results in a fresh list.

[7]:

rejected_bins = []
masked_final_values = []
for final_value, bin_data in zip(final_values, binned_flat):
 rejection = pwa.simulate.make_rejection_list(final_value, max_values)
 rejected_bins.append(bin_data[rejection])
 masked_final_values.append(final_value[rejection])

pwa.cache.write("fitting_bins", rejected_bins, True)
pwa.cache.write("kept_final_values", masked_final_values, True)

[8]:

for index, simulated_bin in enumerate(rejected_bins):
 print(
 f"Bin {index+1}'s length is {len(simulated_bin)}, "
 f"{(len(simulated_bin) / 1_000_000) * 100:.2f}% events were kept"
)

Bin 1's length is 70589, 7.06% events were kept
Bin 2's length is 70544, 7.05% events were kept
Bin 3's length is 70621, 7.06% events were kept
Bin 4's length is 70608, 7.06% events were kept
Bin 5's length is 70532, 7.05% events were kept
Bin 6's length is 70369, 7.04% events were kept
Bin 7's length is 71019, 7.10% events were kept
Bin 8's length is 70542, 7.05% events were kept
Bin 9's length is 70533, 7.05% events were kept
Bin 10's length is 70633, 7.06% events were kept

How Caching is used by the Read and Write functions

If you want your data to be parsable by standard libraries, but still want to leverage the speed of caching, you can use both, by default even! When the Cache Module is used by the Data Module, it utilizes an additional feature that is tucked away when used by itself: File Hashing. The Cache module can be told when it’s caching a specific file, so before the cache is created, it will parse the source file to determine it’s SHA512 Sum, and then store that inside the cache. When the file is loaded
next, the saved SHA512 Sum is compared to the file’s current sum, and if they match the cache is returned, otherwise the file is parsed again, and the cache is recreated.

After the below cell runs, you’ll see two new files created: first_bin.csv and first_bin.cache. These two files will contain the same data, but if the CSV file is changed, even if just by a single character, the file will be parsed again on the next call of pwa.read

[9]:

try:
 first_bin = pwa.read("first_bin.csv")
except Exception:
 first_bin = binned_flat[0]
 pwa.write("first_bin.csv", binned_flat[0])

Fitting

While you can use PyPWA’s likelihoods with any minimizer, PyPWA supports Iminuit 2.X out of the box. The first thing that is done is we set up the parameters to fit against, as well as the individual names of each parameter.

Traditionally, iminuit works by reading the values from the provided function to guess what the parameters are and what to pass to the function, however since we wrap the minimized function to take advantage of GPU acceleration and multiprocessing, you must also tell iMinuit what the values are directly.

[10]:

fitting_settings = {
 "A1": 1, "A2": 1,
 "A3": 1, "A4": 1,
}

Then below, we can simply fit those values.

[11]:

import multiprocessing as mp
Even though we're using Numexpr, I do want to take advantage of both
multiprocessing and Numexpr's low level optimizations. So by selecting
a small number of processes with Numexpr, you still get an overall
speedup over either Numexpr or regular multiprocessing
NeGauss2dAmplitude.USE_MP = True

cpu_final_values= []
for simulated_bin in rejected_bins:
 with pwa.LogLikelihood(
 NeGauss2dAmplitude(), simulated_bin,
 num_of_processes=int(mp.cpu_count() / 2)
) as likelihood:
 optimizer = pwa.minuit(fitting_settings, likelihood)

 for param in ["A1", "A3"]:
 optimizer.limits[param] = (.1, None)

 for param in ["A2", "A4"]:
 optimizer.limits[param] = (1, None)

 cpu_final_values.append(optimizer.migrad())

[12]:

gpu_final_values = []
for simulated_bin in rejected_bins:
 with pwa.LogLikelihood(TorchGauss2dAmplitude(), simulated_bin) as likelihood:
 optimizer = pwa.minuit(fitting_settings, likelihood)

 for param in ["A1", "A3"]:
 optimizer.limits[param] = (.1, None)

 for param in ["A2", "A4"]:
 optimizer.limits[param] = (1, None)

 gpu_final_values.append(optimizer.migrad())

A note about with

If you are new to Python, the with statement might be new to you. with allows you to create objects that should be closed. Traditionally, you will see with used with files, but we use this with Likelihoods. In the file case, when you leave the with block it will flush the buffers for you and close the file’s handle. In the case of Likelihoods, when you leave the with block it will shut down any associated threads, processes, and pipes that are associated with the created
Likelihood.

Below is an example of how the Likelihood works without using the with statement.

[13]:

for simulated_bin in rejected_bins:
 likeihood = pwa.LogLikelihood(TorchGauss2dAmplitude(), simulated_bin)
 optimizer = pwa.minuit(fitting_settings, likelihood)

 for param in ["A1", "A3"]:
 optimizer.limits[param] = (.1, None)

 for param in ["A2", "A4"]:
 optimizer.limits[param] = (1, None)

 # You must remember to close the Likelihood when not using the 'with' block!
 likeihood.close()

Issues with PyPWA.cache

There are some values that can not be saved in a PyPWA’s cache. Typically, it’s an object from a package that takes advantage of Cython or Fortran to accelerate its execution: either because the values are stored as pointers to arrays, or uses C types too deep for Python’s interpreter to analyze. A good example of this case is results from Iminuit.

As you can see below, a Runtime Warning is thrown from PyPWA’s caching module about how the data can’t be saved. However, the real error is that the tuple has values that can not be converted to a pure Python object for pickling.

[14]:

try:
 pwa.cache.write("fitting_results", cpu_final_values, True)
except RuntimeWarning as error:
 print("Caught a cache error")
 print(f"{type(error)}: {error}")

Caught a cache error
<class 'RuntimeWarning'>: Your data can not be saved in cache!

Viewing the results

Finally, we can see what the results of the fitting. The result objects from iminuit are actually Jupyter aware, so if you view a result from iminuit in Jupyter, the values will be responsive.

If you want to know what methods and parameters are available the result object returned by iminuit, you should read through their (documentation)[https://iminuit.readthedocs.io/]

[15]:

print(f"CPU bin 1")
cpu_final_values[0]

CPU bin 1

[15]:

 	 Migrad

 	 FCN = 2.259e+05
 	 Nfcn = 231

 	 EDM = 5.29e-07 (Goal: 0.0001)
 	

 	 Valid Minimum
 	 No Parameters at limit

 	 Below EDM threshold (goal x 10)
 	 Below call limit

 	 Covariance
 	 Hesse ok
 	 Accurate
 	 Pos. def.
 	 Not forced

 	
 	 Name
 	 Value
 	 Hesse Error
 	 Minos Error-
 	 Minos Error+
 	 Limit-
 	 Limit+
 	 Fixed

 	 0
 	 A1
 	 10.005
 	 0.008
 	
 	
 	 0.1
 	
 	

 	 1
 	 A2
 	 3.003
 	 0.008
 	
 	
 	 1
 	
 	

 	 2
 	 A3
 	 9.995
 	 0.008
 	
 	
 	 0.1
 	
 	

 	 3
 	 A4
 	 3.006
 	 0.008
 	
 	
 	 1
 	
 	

 	
 	 A1
 	 A2
 	 A3
 	 A4

 	 A1
 	 6.39e-05
 	 5.59e-08
 	 8.65e-14
 	 8.61e-14

 	 A2
 	 5.59e-08
 	 6.39e-05
 	 6.89e-14
 	 -3.45e-13

 	 A3
 	 8.65e-14
 	 6.89e-14
 	 6.4e-05
 	 5.57e-08

 	 A4
 	 8.61e-14
 	 -3.45e-13
 	 5.57e-08
 	 6.4e-05

[16]:

print(f"GPU bin 1")
display(gpu_final_values[0])

GPU bin 1

 	 Migrad

 	 FCN = 2.259e+05
 	 Nfcn = 231

 	 EDM = 5.29e-07 (Goal: 0.0001)
 	

 	 Valid Minimum
 	 No Parameters at limit

 	 Below EDM threshold (goal x 10)
 	 Below call limit

 	 Covariance
 	 Hesse ok
 	 Accurate
 	 Pos. def.
 	 Not forced

 	
 	 Name
 	 Value
 	 Hesse Error
 	 Minos Error-
 	 Minos Error+
 	 Limit-
 	 Limit+
 	 Fixed

 	 0
 	 A1
 	 10.005
 	 0.008
 	
 	
 	 0.1
 	
 	

 	 1
 	 A2
 	 3.003
 	 0.008
 	
 	
 	 1
 	
 	

 	 2
 	 A3
 	 9.995
 	 0.008
 	
 	
 	 0.1
 	
 	

 	 3
 	 A4
 	 3.006
 	 0.008
 	
 	
 	 1
 	
 	

 	
 	 A1
 	 A2
 	 A3
 	 A4

 	 A1
 	 6.39e-05
 	 5.59e-08
 	 0
 	 -0

 	 A2
 	 5.59e-08
 	 6.39e-05
 	 -0
 	 0

 	 A3
 	 0
 	 -0
 	 6.4e-05
 	 5.57e-08

 	 A4
 	 -0
 	 0
 	 5.57e-08
 	 6.4e-05

Simulation Tutorial

[1]:

import PyPWA as pwa
import numpy as npy
import pandas
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')

Define (import) amplitude (function) to simulate

The function will be use by the rejection method to “carve” a new distribution into the input simulated data read in next lines.

[2]:

#
import AmplitudeJPACsim
amp = AmplitudeJPACsim.NewAmplitude()

Read input (flat) simulated data (in condense format)

[3]:

data = pwa.read("etapiHEL2_flat.txt")

Read data full (from gamp files)

[4]:

datag = pwa.read("../TUTORIAL_FILES/raw_events.gamp")

The format of the input data will depend on the Amplitudes: In this example the standard HEL angles, polarization angle (alpha) and other information neccesary are given for PWA (see below)

[5]:

data

[5]:

 Fitting Tutorial

Fitting Tutorial

[1]:

import PyPWA as pwa
import pandas
import numpy as npy
from IPython.display import display
import warnings
warnings.filterwarnings('ignore')

Define Waves for Fit (and input initial values of minuit and fitted parameters).* >In this example (as expected by the defined amplitude)
>each wave is defined by (epsilon.l.m) and each parameter has a real and imaginary part.
>i.e a epsilon=-1, l=1 (P wave), m=1 will produce Vs(r.-1.1.1) and Vs(i.-1.1.1) names.
>(In this example the imaginary part of the P-wave is kept fixed at 0 value
>in the fit)
==

[2]:

Vs = {"errordef": 1}
initial = []
for param_type in ["r", "i"]:
 initial.append(f"{param_type}.1.0.0")
 initial.append(f"{param_type}.1.1.0")
 initial.append(f"{param_type}.1.1.1")
 initial.append(f"{param_type}.1.2.0")
 initial.append(f"{param_type}.1.2.1")
 initial.append(f"{param_type}.1.2.2")
initial.append(f"{param_type}.1.3.1")
initial.append(f"{param_type}.1.4.1")

 Vs[f"{param_type}.1.0.0"] = 10
 Vs[f"limit_{param_type}.1.0.0"] = [-500, 1500.]
 Vs[f"error_{param_type}.1.0.0"] = .1
Vs[f"fix_i.-1.0.0"] = True

 Vs[f"{param_type}.1.1.0"] = 10
 Vs[f"limit_{param_type}.1.1.0"] = [-500, 1500.]
 Vs[f"error_{param_type}.1.1.0"] = .1

 Vs[f"{param_type}.1.1.1"] = 10
 Vs[f"limit_{param_type}.1.1.1"] = [-500, 1500.]
 Vs[f"error_{param_type}.1.1.1"] = .1
 Vs[f"fix_i.1.1.1"] = True

 Vs[f"{param_type}.1.2.0"] = 10
 Vs[f"limit_{param_type}.1.2.0"] = [-500, 1500.]
 Vs[f"error_{param_type}.1.2.0"] = .1

 Vs[f"{param_type}.1.2.1"] = 10
 Vs[f"limit_{param_type}.1.2.1"] = [-500, 1500.]
 Vs[f"error_{param_type}.1.2.1"] = .1

 Vs[f"{param_type}.1.2.2"] = 10
 Vs[f"limit_{param_type}.1.2.2"] = [-500, 1500.]
 Vs[f"error_{param_type}.1.2.2"] = .1

Vs[f"{param_type}.1.3.1"] = 10
Vs[f"limit_{param_type}.1.3.1"] = [-500, 1500.]
Vs[f"error_{param_type}.1.3.1"] = .1

Vs[f"{param_type}.1.4.1"] = 10
Vs[f"limit_{param_type}.1.4.1"] = [-500, 1500.]
Vs[f"error_{param_type}.1.4.1"] = .1

Vs[f"i.1.1.1"] = 0.1

Read data and montecarlos (accepted and generated) samples

[3]:

datasample = pandas.read_csv("simdata_JPAC-np.csv")
#accmcsample = pandas.read_csv("simdata5.csv")
#rawmcsample = pandas.read_csv("simdata5.csv")
#datasample = pwa.read("etapi_data_data.txt")
#accmcsample = pwa.read("etapi_acc.txt")
accmcsample = pwa.read("../TUTORIAL_FILES/etapi_acc.txt")
rawmcsample = pwa.read("../TUTORIAL_FILES/etapi_raw.txt")

Binning of the data/monte-carlo and define amplitude (function) to fit* > Here the user difine number of bins, variable to be binned and range

[4]:

#import AmplitudeOLDfit
#amplitude = AmplitudeOLDfit.FitAmplitude(initial)
import AmplitudeJPACfit
amplitude = AmplitudeJPACfit.FitAmplitude(initial)
#Define number of bins
nbins = 20
binsda = pwa.bin_by_range(datasample, "mass", nbins, .6, 2.0)
binsma = pwa.bin_by_range(accmcsample, accmcsample["mass"], nbins, .6, 2.0)
binsmr = pwa.bin_by_range(rawmcsample, rawmcsample["mass"], nbins, .6, 2.0)

Check that bins have enough number of events for fit

[5]:

for bin in binsda:
 print(len(bin))

6577
9364
16674
45953
127024
48129
21406
23014
41661
58948
20078
5179
3404
5434
11026
18505
19504
13486
8425
5481

Fitting with Minuit and Extended LogLikelihood

Look at other possibilities through pypwa (use the ?pwa command

or see https://pypwa.jlab.org or https://github.com/JeffersonLab/PyPWA)

[6]:

from IPython.display import display
intensities = []
for the_bin in binsda:
amp = AmplitudeJPACfit.FitAmplitude(initial)
 amplitude.setup(the_bin)
intensities.append(amplitude.calculate(Vs))
 display(pandas.DataFrame(amplitude.calculate(Vs)))

 Prediction Tutorial

Prediction Tutorial

Simulates “true data” corrected by acceptance, according to

the fitted values for the amplitude

[1]:

import PyPWA as pwa
import numpy as npy
import pandas
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')

Define waves and amplitude (function) to simulate

[2]:

initial=[]
for param_type in ["r", "i"]:
 initial.append(f"{param_type}.1.0.0")
 initial.append(f"{param_type}.1.1.0")
 initial.append(f"{param_type}.1.1.1")
 initial.append(f"{param_type}.1.2.0")
 initial.append(f"{param_type}.1.2.1")
 initial.append(f"{param_type}.1.2.2")
#import AmplitudeOLDfit
#amp = AmplitudeOLDfit.FitAmplitude(initial)
#
import AmplitudeJPACsim
amp = AmplitudeJPACsim.NewAmplitude()
#
#import AmplitudeJPACfit
#amp = AmplitudeJPACfit.FitAmplitude(initial)

Read input (flat) simulated (generated) data

[3]:

data = pwa.read("etapiHEL_flat.txt")

Read flat data in gamp format (full information)

[4]:

datag = pwa.read("../TUTORIAL_FILES/raw_events.gamp")

Define number of bins (MUST be the same as the fitted parameters)

[5]:

nbins=20
bins = pwa.bin_by_range(data, "mass", nbins, .6, 2.0)

Calculate the mass value and number of events in each bin

[6]:

bmass=[]
mcounts=[]
for index, bin in enumerate(bins):
 if len(bin)==0:
 bmass.append(0.)
 mcounts.append(0.)
 else:
 bmass.append(npy.average(bin["mass"]))
 mcounts.append(len(bin))

Read parameters from fit

[7]:

par = pwa.read("final_values_JPAC.csv")

Prepare for a binned simulation > Find intensities in each bin and max intensity for each bin.

[8]:

int_values = []
max_values = []
params={}
for index, bin in enumerate(bins):
 for param_type in ["r", "i"]:
 params.update({f"{param_type}.1.0.0":par[f"{param_type}.1.0.0"][index]})
 params.update({f"{param_type}.1.1.0":par[f"{param_type}.1.1.0"][index]})
 params.update({f"{param_type}.1.1.1":par[f"{param_type}.1.1.1"][index]})
 params.update({f"{param_type}.1.2.0":par[f"{param_type}.1.2.0"][index]})
 params.update({f"{param_type}.1.2.1":par[f"{param_type}.1.2.1"][index]})
 params.update({f"{param_type}.1.2.2":par[f"{param_type}.1.2.2"][index]})

 [int,intmax] = pwa.simulate.process_user_function(amp,bin,params,16)
 int_values.append(int)
 max_values.append(intmax)

Simulate events for each bin (produce mask and mask them)

[9]:

rejected_bins = []
masked_final_values = []
for int_value, bin in zip(int_values, bins):
 rejection = pwa.simulate.make_rejection_list(int_value, max_values)
 rejected_bins.append(bin[rejection])
 masked_final_values.append(int_value[rejection])

Check how many events simulated by bin

[10]:

for index, simulated_bin in enumerate(rejected_bins):
 print(
 f"Bin {index+1}'s length is {len(simulated_bin)}, "
 f"{(len(simulated_bin) / len(bin)) * 100:.2f}% events were kept"
)

Bin 1's length is 4850, 1.79% events were kept
Bin 2's length is 6545, 2.42% events were kept
Bin 3's length is 10388, 3.84% events were kept
Bin 4's length is 25492, 9.42% events were kept
Bin 5's length is 65913, 24.34% events were kept
Bin 6's length is 27495, 10.15% events were kept
Bin 7's length is 15419, 5.69% events were kept
Bin 8's length is 17872, 6.60% events were kept
Bin 9's length is 31916, 11.79% events were kept
Bin 10's length is 45793, 16.91% events were kept
Bin 11's length is 20121, 7.43% events were kept
Bin 12's length is 10427, 3.85% events were kept
Bin 13's length is 10301, 3.80% events were kept
Bin 14's length is 12541, 4.63% events were kept
Bin 15's length is 15215, 5.62% events were kept
Bin 16's length is 18517, 6.84% events were kept
Bin 17's length is 17288, 6.39% events were kept
Bin 18's length is 12478, 4.61% events were kept
Bin 19's length is 8226, 3.04% events were kept
Bin 20's length is 5718, 2.11% events were kept

Stak data for all bins in one file (new_data)

[11]:

for index, the_bin in zip(range(len(rejected_bins)), rejected_bins):
 if index ==0:
 new_data=pandas.DataFrame(the_bin)

 new_data = new_data.append(the_bin,ignore_index=True)

#print(new_data)

[12]:

new_data

[12]:

 Working with Data

Working with Data

Reading and Writing Data

This is the reference documentation for the functions and classes
inside PyPWA that can be used for parsing and writing data to disk.
There exists four different methods to do so:

	Reading and Writing Data

	Basic Data Sanitization

	Data Iterators and Writers

	Working with HDF5

	Caching

PyPWA also defines a vector data types and collections for working with
Particles, Four Vectors, and Three Vectors, which can be found
here.

Reading and Writing Data

Reading and writing from disk to memory. This method will load the entire
dataset straight into RAM, or write a dataset straight from RAM onto disk.

	
PyPWA.read(filename, use_pandas=False, cache=True, clear_cache=False)

	Reads the entire file and returns either DaataFrame, ParticlePool,
or standard numpy array depending on the data found inside the file.

	Parameters

	
	filename (Path, str) – File to read.

	use_pandas (bool) – Determines if a numpy data type or pandas data type is returned.

	cache (bool, optional) – Enables or disables caching. Defaults to the enabled. Leaving this
enabled should do no harm unless there something is broken with
caching. Disable this if returning the wrong data for debug
purposes. If it continues to return the incorrect data when
disabled then caching isn’t the issue.

	clear_cache (bool, optional) – Forcefully clears the cache for the files that are parsed. Instead
of loading the cache, it’ll delete the cache and write a new cache
object instead if cache is enabled.

	Returns

	
	DataFrame – If the file is a kVars file, CSV, or TSV

	npy.ndarray – If the file is a numpy file, PF file, or single column txt file

	ParticlePool – If parsing a gamp file

	Raises

	RuntimeError – If there is no plugin that can load the data found

	
PyPWA.write(filename, data, cache=True, clear_cache=False)

	Reads the entire file and returns either DaataFrame, ParticlePool,
or standard numpy array depending on the data found inside the file.

	Parameters

	
	filename (Path, str) – The filename of the file you wish to write

	cache (bool, optional) – Enables or disables caching. Defaults to the enabled. Leaving this
enabled should do no harm unless there something is broken with
caching.

	clear_cache (bool, optional) – Forcefully clears the cache for the files that are parsed. It’ll
delete the cache and write a new cache object instead when cache
is enabled.

	Raises

	RuntimeError – If there is no plugin that can load the data found

Basic Data Sanitization

Allows quick converting of data from Pandas to Numpy, as well as preps
data to be passed to non-Python function’s and classes; Such as Fortran
modules compiled with f2py, or C/C++ modules bound by Cython.

	
PyPWA.pandas_to_numpy(df)

	Converts Pandas DataTypes to Numpy

Takes a Pandas Series or DataFrame and converts it to Numpy. Pandas
does have a built in to_records function, however records are slower
than Structured Arrays, while containing much of the same
functionality.

	Parameters

	df (Pandas Series or DataFrame) – The pandas data structure that you wish to be converted to
standard Numpy Structured Arrays

	Returns

	The resulting Numpy array or structured array containing the data
from the original DataFrame or Series. If it was a Series with
each row named (like an element from a DataFrame) it’ll be a
Structured Array with length=1, if it was a standard Series it’ll
return a single Numpy Array, and if it was a DataFrame the results
will be stored in Structured array matching the types and names
from the DataFrame.

	Return type

	Numpy ArrayLike

	
PyPWA.to_contiguous(data, names)

	Convert DataFrame or Structured Array to List of Contiguous Arrays

This takes a data-set and a list of column names and converts those
columns into Contiguous arrays. The reason to use Contiguous arrays
over DataFrames or Structured arrays is that the memory is better
aligned to improve speed of computation. However, this does double
the memory requirements of your data-set since this copies all the
events over to the new array. Use only in amplitudes where you need
to maximize the speed of your amplitude.

	Parameters

	
	data (Structured Array, DataFrame, or Dict-like) – This is the data frame or Structured array that you want to
extract columns from

	names (List of Column Names or str) – This is either a list of columns you want from the array, or a
single column you want from the array

	Returns

	If you provide only a single column, it’ll only return a single
array with the data from that array. However, if you have supplied
multiple columns in a list or tuple, it’ll return a tuple of
arrays in the same order as the supplied names.

	Return type

	ArrayLike or Tuple[ArrayLike]

Data Iterators and Writers

Reading and writing a single event at a time instead of having the entire
contents of the dataset memory at once. This is good choice if you are
wanting to rapidly transform the data that is on disk.

	
class PyPWA.DataType(value)

	Enumeration for type of data to be read or written using the reader
and writer.

Because of how the reader and writer are designed they can not
inspect the data before it starts working with the data. This enum
is used to specify the type of data you’re working with.

	BASIC = Standard arrays with no columns

	STRUCTURED = Columned array (CSV, TSV, DataFrames)

	TREE_VECTOR = Particle Data (GAMP)

	
PyPWA.get_writer(filename, dtype)

	Returns a writer that can write to the file one event at a time

	Parameters

	
	filename (str, Path) – The file that you want to write to

	dtype (DataType) – Specifies the type of that needs to be written. TREE_VECTOR is
used for ParticlePools and only works with the ‘.gamp’ extension
for now. STRUCTURED_ARRAY is used for both numpy structured arrays
and pandas DataFrames. BASIC is used for standard numpy arrays.

	Returns

	A writer that can read the file, defined in PyPWA.plugins.data

	Return type

	templates.WriterBase

	Raises

	RuntimeError – If there is no plugin that can write the data found

See also

	write
	Writes a ParticlePool, DataFrame, or array to file

Examples

The writer can be used to write a ParticlePool one event at a time

>>> writer = get_writer("example.gamp", DataType.TREE_VECTOR)
>>> for event in particles.iter_events():
>>> writer.write(event)
>>> writer.close()

	
PyPWA.get_reader(filename, use_pandas=False)

	Returns a reader that can read the file one event at a time

Note

The return value from the reader coule bd a pointer, if you need
to keep the event without it being overwrote on the next call, you
must call the copy method on the returned data to get a unique
copy.

	Parameters

	
	filename (str, Path) – File to read

	use_pandas (bool) – Determines if a numpy data type or pandas data type is returned.

	Returns

	A reader that can read the file, defined in PyPWA.plugins.data

	Return type

	templates.ReaderBase

	Raises

	RuntimeError – If there is no plugin that can load the data found

See also

	read
	Reads an entire file into a DataFrame, ParticlePool, or array

Examples

The reader can be used inside a standard for loop

>>> reader = get_reader("example.gamp")
>>> for event in reader:
>>> my_kept_event = event.copy()
>>> regular_event = event
>>> reader.close()

Caching

Using pickles to quickly write and read data straight from disk as
intermediate caching steps. These are special functions that allow caching
values or program states quickly for resuming later. This is a good way to
save essential data for a Jupyter Notebook so that if the kernel is
rebooted, data isn’t lost.

	
PyPWA.cache.read(path, intermediate=True, remove_cache=False)

	Reads a cache object

This reads caches objects from the disk. With its default settings
it’ll read the file as if it were a cache file. If intermediate is
set to False, the path will be the source file, and it’ll load the cache
file as long as the source file’s hash hasn’t changed. It can also be

	Parameters

	
	path (Path or str) – The path of the source file, or path where you want the
intermediate step to be stored.

	intermediate (bool) – If set to true, the cache will be treated as an intermediate step,
this means it will assume there is no data file associated with
the data, and will not check file hashes. By default this is True

	remove_cache (bool) – Setting this to true will remove the cache.

	Returns

	The first value in the tuple is whether the cache is valid or not
and the second value in the returned tuple is whatever data was
stored in the cache.

	Return type

	Tuple[bool, any]

	
PyPWA.cache.write(path, data, intermediate=True)

	Writes a cache file

With its default settings, it will treat the path as a save location for
the cache as an intermediate step. If intermediate is set to false,
it’ll write the cache file into a computed cache location and store the
source file’s hash in the cache for future comparison.

	Parameters

	
	path (Path or str) – The path of the source file, or path where you want the
intermediate step t0 be stored.

	data (Any) – Whatever data you wish to be stored in the cache. Almost anything
that can be stored in a variable, can be stored on disk.

	intermediate (bool) – If set to true, the cache will be treated as an intermediate step,
this means it will assume there is no data file associated with
the data, and will not check file hashes.

Binning

We provide functions that make binning data in memory an easy process,
however for HDF5 a future more in-depth example and documentation
will be made available.

	
PyPWA.bin_with_fixed_widths(dataframe, bin_series, fixed_size, lower_cut=None, upper_cut=None)

	Bins a dataframe by fixed using a series in memory

Bins an input array by a fixed number of events in memory. You must
put all data you want binned into the DataFrame or Structured Array
before use. Each resulting bin can be further binned if you desire.

If the fixed_size does not evenly divide into the length of
bin_series, the first and last bin will contain overflows.

	Parameters

	
	dataframe (DataFrame or Structured Array) – The dataframe or numpy array that you wish to break into bins

	bin_series (Array-like) – Data that you want to bin by, selectable by user. Must have the
same length as dataframe. If a column name is provided, that
column will be used from the dataframe.

	fixed_size (int) – The number of events you want in each bin.

	lower_cut (float, optional) – The lower cut off for the dataset, if not provided it will be set
to the smallest value in the bin_series

	upper_cut (float, optional) – The upper cut off for the dataset, if not provided will be set
to the largest value in the bin_series

	Returns

	A list of array-likes that have been masked off of the input
bin_series.

	Return type

	List[DataFrame or Structured Array]

	Raises

	ValueError – If the length of the input array and bin array don’t match

Warning

This function does all binning in memory, if you are working with
a large dataset that doesn’t fit in memory, or if you overflow while
you are binning, you must use a different binning method

See also

	PyPWA.libs.file.project
	A numerical dataset that supports binning on disk instead of in-memory. It’s slower and requires more steps to use, but should work even on memory limited systems.

Examples

Binning a DataFrame with values x, y, and z using z to bin

>>> data = {
>>> "x": npy.random.rand(1000), "y": npy.random.rand(1000),
>>> "z": (npy.random.rand(1000) * 100) - 50
>>> }
>>> df = pd.DataFrame(data)
>>> list(df.columns)
["x", "y", "z"]

This will give us a usable DataFrame, now to make a series out of z
and use it to make 10 bins.

>>> binning = df["z"]
>>> range_bins = bin_with_fixed_widths(df, binning, 250)
>>> len(range_bins)
4

Each bin should have exactly 250 events in size

>>> lengths = []
>>> for abin in range_bins:
>>> lengths.append(len(abin))
[250, 250, 250, 250]

That will give you 4 bins with exaactly the same number of events
per bin, plus 2 more bins if needed.

	
PyPWA.bin_by_range(dataframe, bin_series, number_of_bins, lower_cut=None, upper_cut=None, sample_size=None)

	Bins a dataframe by range using a series in memory

Bins an input array by range in memory. You must put all data you want
binned into the DataFrame or Structured Array before use. Each
resulting bin can be further binned if you desire.

	Parameters

	
	dataframe (DataFrame or Structured Array) – The dataframe or numpy array that you wish to break into bins

	bin_series (Array-like) – Data that you want to bin by, selectable by user. Must have the
same length as dataframe. If a column name is provided, that
column will be used from the dataframe.

	number_of_bins (int) – The resulting number of bins that you would like to have.

	lower_cut (float, optional) – The lower cut off for the dataset, if not provided it will be set
to the smallest value in the bin_series

	upper_cut (float, optional) – The upper cut off for the dataset, if not provided will be set
to the largest value in the bin_series

	sample_size (int, optional) – If provided each bin will have a randomly selected number of
events of length sample_size.

	Returns

	A list of array-likes that have been masked off of the input
bin_series.

	Return type

	List[DataFrame or Structured Array]

	Raises

	ValueError – If the length of the input array and bin array don’t match

Warning

This function does all binning in memory, if you are working with
a large dataset that doesn’t fit in memory, or if you overflow while
you are binning, you must use a different binning method

See also

	PyPWA.libs.file.project
	A numerical dataset that supports binning on disk instead of in-memory. It’s slower and requires more steps to use, but should work even on memory limited systems.

Notes

The range is selected using a simple method:

\[(max - min) / num_of_bins\]

Examples

Binning a DataFrame with values x, y, and z using z to bin

>>> data = {
>>> "x": npy.random.rand(1000), "y": npy.random.rand(1000),
>>> "z": (npy.random.rand(1000) * 100) - 50
>>> }
>>> df = pd.DataFrame(data)
>>> list(df.columns)
["x", "y", "z"]

This will give us a usable DataFrame, now to make a series out of z
and use it to make 10 bins.

>>> binning = df["z"]
>>> range_bins = bin_by_range(df, binning, 10)
>>> len(range_bins)
10

That will give you 10 bins with a very close number of values per bin

	
PyPWA.bin_by_list(data, bin_series, bin_list)

	Bins a dataframe by list of bin limits using a series in memory

Bins an input array by list of bin limits in memory. You must put all data
you want binned into the DataFrame or Structured Array before use. Each
resulting bin can be further binned if you desire.

	Parameters

	
	data (DataFrame or Structured Array) – The dataframe or numpy array that you wish to break into bins

	bin_series (Array-like) – Data that you want to bin by, selectable by user. Must have the
same length as dataframe. If a column name is provided, that
column will be used from the dataframe.

	bin_list (list) – The list of bin limits used to create the bins.

	Returns

	A list of array-likes that have been masked off of the input
bin_series.

	Return type

	List[DataFrame or Structured Array]

	Raises

	ValueError – If the length of the input array and bin array don’t match

Warning

This function does all binning in memory, if you are working with
a large dataset that doesn’t fit in memory, or if you overflow while
you are binning, you must use a different binning method

See also

	PyPWA.libs.file.project
	A numerical dataset that supports binning on disk instead of in-memory. It’s slower and requires more steps to use, but should work even on memory limited systems.

Examples

Binning a DataFrame with values x, y, and z using z to bin

First create the list which defines all the bin limits
>>> bin_limits = [1,3,7,10]

>>> dataset = {
>>> "x": npy.random.rand(1000), "y": npy.random.rand(1000),
>>> "z": (npy.random.rand(1000) * 100) - 50
>>> }
>>> df = pd.DataFrame(dataset)
>>> list(df.columns)
["x", "y", "z"]

This will give us a usable DataFrame, now to make a series out of z
and use it to make the 3 defined bins bins.

>>> binning = df["z"]
>>> range_bins = bin_by_list(df, binning, bin_limits)
>>> len(range_bins)
3

That will give you 3 bins with custom bin limits

Builtin Vectors

PyPWA includes support for both 3 and 4 vector classes, complete with
methods to aid operating with vector data. Each vector utilizes Numpy
for arrays and numerical operations.

	
class PyPWA.ParticlePool(particle_list)

	Stores a collection of particles together as a list.

By default the particles are represented as their angles and mass,
however internally the particles are still stored as the Four Momenta.

	
display_raw()

	Display’s the file

	
property event_count: int

	

	
get_event_mass()

	

	
get_particles_by_id(particle_id)

	

	
get_particles_by_name(particle_name)

	

	
get_s()

	

	
get_t()

	

	
get_t_prime()

	

	
iter_events()

	

	
iter_particles()

	

	
property particle_count: int

	

	
split(count)

	Split’s the particles in N groups.

This is required to be a method on any object that needs to be
passed to the processing module.

	Parameters

	count (int) – How many ParticlePools to return

	Returns

	A list of particle pools that can be passed to different
process groups.

	Return type

	List[ParticlePool]

	
property stored: List[Particle]

	

	
class PyPWA.Particle(particle_id, charge, e, x=None, y=None, z=None)

	Numpy backed Particle object for vector operations inside
PyPWA.

By default, Particle is represented through the particles
angles and mass. However, internally the particle is stored
as four momenta just as it’s stored in the GAMP format.

	Parameters

	
	particle_id (int) – The Particle ID, used to determine the particle’s name and charge.

	charge (int) – The particle’s Charge as read from the GAMP file.

	e (int, npy.ndarray, float, or DataFrame) – Can be an integer to specify size, a structured array or DataFrame
with x y z and e values, a single float value, or a Series or
single dimensional array, If you provide a float, series, or
array, you need to provide a float for the other options as well.

	x (int, npy.ndarray, float, or DataFrame, optional) –

	y (int, npy.ndarray, float, or DataFrame, optional) –

	z (int, npy.ndarray, float, or DataFrame, optional) –

See also

	FourVector
	For storing a FourVector without particle ID

	ParticlePool
	For storing a collection of particles

	
property charge: int

	Immutable charge for the particle produced from the ID.

	
display_raw()

	Displays the contents of the Particle as Four Momenta

	
get_copy()

	Returns a deep copy of the Particle.

	Returns

	Copy of the particle.

	Return type

	Particle

	
property id: int

	Immutable provided ID at initialization.

	
property name: str

	Immutable name for the particle produced from the ID.

	
split(count)

	Splits the Particle for distributed computing.

Will return N Particles which together will have the same number
of elements as the original Particle.

	Parameters

	count (int) – The amount of Particles to produce from current particle.

	Returns

	The list of Particles

	Return type

	List[Particle]

	
class PyPWA.FourVector(e, x=None, y=None, z=None)

	DataFrame backed FourVector object for vector operations inside
PyPWA.

	Parameters

	
	e (int, np.ndarray, float, or DataFrame) – Can be an integer to specify size, a structured array or DataFrame
with x y z and e values, a single float value, or a Series or
single dimensional array, If you provide a float, series, or
array, you need to provide a float for the other options as well.

	x (int, np.ndarray, float, or Series, optional) –

	y (int, np.ndarray, float, or Series, optional) –

	z (int, np.ndarray, float, or Series, optional) –

See also

	ThreeVector
	For storing a standard X, Y, Z vector

	Particle
	For storing a particle, adds support for a particle ID

	
class PyPWA.ThreeVector(x, y=None, z=None)

	DataFrame backed ThreeVector object for vector operations inside
PyPWA.

	Parameters

	
	x (int, npy.ndarray, float, or DataFrame) – Can be an integer to specify size, a structured array or DataFrame
with x y and z values, a single float value, or a Series or
single dimensional array, If you provide a float, series, or
array, you need to provide a float for the other options as well.

	y (int, npy.ndarray, float, or DataFrame, optional) –

	z (int, npy.ndarray, float, or DataFrame, optional) –

See also

	FourVector
	For storing a vector with it’s energy.

 Simulation and Fitting

Simulation and Fitting

PyPWA defines both the monte carlo simulation method as well as the
several likelihoods. To use these, the cost function or amplitude needs
to be defined in a support object.

	Defining an Amplitude describes how to define a
function for use with the simulation and likelihoods.

	Simulating describes the Monte Carlo Simulation
methods.

	Likelihoods describes the built in likelihoods.
These likelihoods also automatically distribute the fitting function
across several processors.

	Fitting describes the built in minuit wrapper, as well
as how to use the Likelihood objects with other optimizers.

Defining an Amplitude

Amplitudes or cost functions can be defined for using either an Object
Oriented approach, or a Functional programming approach. If using pure
functions for the function, wrap the calculation function and optional
setup function in PyPWA.FunctionalAmplitude, if using the OOP approach,
extend the PyPWA.NestedFunction abstract class when defining the
amplitude.

It is assumed by both the Likelihoods and Monte Carlo that the calculate
functions of either methods will return a standard numpy array of final
values.

	
class PyPWA.NestedFunction

	Interface for Amplitudes

These objects are used for calculating the users’ amplitude. They’re
expected to be initialized by the time they are sent to the kernel,
and will be deep-copied for each process. The setup will be called
first to initialize data and anything else that might need to be done,
and then the calculate function will be called for each call to the
likelihood.

Set USE_MP to false to execute on the main thread only, this is best
for when using packages like numexpr that handle multi-threading
themselves.

Set USE_TORCH to calculate the likelihood using PyTorch. Assumes that
all data returned from the NestedFunction will be in a Tensor.

Set USE_THREADS to calculate the likelihood using threads. This is best
if the likelihood is dependent on waiting for responses from hardware
or network devices; or if you are working with data that can not be
forked.

Set USE_GPU to calculate the likelihood using GPU. If this is set to true,
then USE_MP will be set to false, and USE_THREADS and USE_TORCH will be
set to True internally. This will raise a RuntimeError if the GPU is not
available.

Set DEBUG to True to disable all multiprocessing and threads, this will
prevent errors from being buried in tracebacks.

Warning

If you enable USE_MP and USE_THREADS, then a RuntimeError will be raised,
since Multiprocessing and threads are not compatible.

See also

	FunctionAmplitude
	For using the old amplitudes with PyPWA 3

	
abstract calculate(parameters)

	Calculates the amplitude

	Parameters

	parameters (Dict[str, float]) – The parameters sent to the process by the optimizer

	Returns

	The array of results for the amplitude, these will be summed
by the likelihood. A tensor is expected when USE_TORCH is true

	Return type

	npy.ndarray, Series, or Tensor

	
abstract setup(data)

	Sets up the amplitude for use.

This is where the data that will be used for this specific process
will be passed to.

	Parameters

	data (DataFrame or npy.ndarray) – The data that will be used for calculation

	
class PyPWA.FunctionAmplitude(setup, processing)

	Wrapper for Legacy PyPWA 2.X amplitudes

The old amplitudes were two simple functions that would be passed to
the kernels, a single setup function and a calculate function. Now
the amplitudes are objects. This wraps the functions and presents
them as the new Amplitude object

	Parameters

	
	setup (Callable[[],] function with no arguments or returns) – The old setup function that would be used

	processing (Callable[[pd.DataFrame, Dict[str, float]], float]) – The old processing function

See also

	NestedFunction
	For defining new functions

	
calculate(parameters)

	Calculates the amplitude

	Parameters

	parameters (Dict[str, float]) – The parameters sent to the process by the optimizer

	Returns

	The array of results for the amplitude, these will be summed
by the likelihood. A tensor is expected when USE_TORCH is true

	Return type

	npy.ndarray, Series, or Tensor

	
setup(data)

	Sets up the amplitude for use.

This is where the data that will be used for this specific process
will be passed to.

	Parameters

	data (DataFrame or npy.ndarray) – The data that will be used for calculation

Simulating

There are two choices when using the Monte Carlo Simulation method
defined in PyPWA: Simulation in one pass producing the rejection list,
or simulation in two passes to produce the intensities and finally the
rejection list. Both methods will take advantage of SMP where available.

	If doing a single pass, just use the PyPWA.monte_carlo_simulation
function. This will take the fitting function defined from
Defining an Amplitude along with the data, and return
a single rejection list.

	If doing two passes for more control over when the intensities and
rejection list, use both PyPWA.simulate.process_user_function to
calculate the intensity and local max value, and
PyPWA.simulate.make_rejection_list to take the global max value and
local intensity to produce the local rejection list.

	
PyPWA.monte_carlo_simulation(amplitude, data, params=None, processes=2)

	Produces the rejection list
This takes a user defined intensity object along with it’s
associated data, and generates a pass/fail array to be used to
mask any dataset of the same length as data.

	Parameters

	
	amplitude (Amplitude derived from AbstractAmplitude) – A user defined amplitude or pre-made PyPWA amplitude that you
wish to carve your data with.

	data (Structured Array, DataFrame, or BaseFolder from Project) – This is the data you want to be passed to the setup function
of your amplitude. If you provide a Structured Array or DataFrame
the entire calculation will occur in memory with the selected
number of processes. If you provide a Project BaseFolder the
calculation will rely entirely on the Amplitude.

	params (Dict[str, float], optional) – An optional dictionary of parameters that will be passed to the
AbstractAmplitude’s calculate function.

	processes (int, optional) – Selects the number of processes to run with, defaults to the
number of processes detected through multiprocessing

	Returns

	A masking array that can be used with any DataFrame or Structured
Array to cut the events to the generated shape

	Return type

	boolean npy.ndarray

	Raises

	ValueError – If the data is not understood. If you received this, check your
 data to ensure its a supported type

Examples

How to cut your data with results from monte_carlo_simulation

>>> rejection = monte_carlo_simulation(Amplitude(), data)
>>> carved = data[rejection]

	
PyPWA.simulate.process_user_function(amplitude, data, params=None, processes=2)

	Produces an array of values for the calculated function.

	Parameters

	
	amplitude (Amplitude derived from AbstractAmplitude) – A user defined amplitude or pre-made PyPWA amplitude that you
wish to carve your data with.

	data (Structured Array, DataFrame, or BaseFolder from Project) – This is the data you want to be passed to the setup function
of your amplitude. If you provide a Structured Array or DataFrame
the entire calculation will occur in memory with the selected
number of processes. If you provide a Project BaseFolder the
calculation will rely entirely on the Amplitude.

	params (Dict[str, float], optional) – An optional dictionary of parameters that will be passed to the
AbstractAmplitude’s calculate function.

	processes (int, optional) – Selects the number of processes to run with, defaults to the
number of processes detected through multiprocessing

	Returns

	The final values computed from the user’s function and the max
value computed for that dataset.

	Return type

	(float npy.ndarray, float)

	Raises

	ValueError – If the data is not understood. If you received this, check your
 data to ensure its a supported type

	
PyPWA.simulate.make_rejection_list(intensities, max_value)

	Produces the rejection list from pre-calculated function values.
Uses the values returned by process_user_function.

	Parameters

	
	intensities (Numpy array or Pandas Series) – This is a single dimensional array containing the final values
for the user’s function.

	max_value (List, Tuple, Set, nd.ndarray, or float) – The max value for the entire dataset, or list of all the max
values from each dataset. Only the largest value from the list
will be used.

	Returns

	A masking array that can be used with any DataFrame or Structured
Array to cut the events to the generated shape

	Return type

	boolean npy.ndarray

Likelihoods

PyPWA supports 3 unique likelihood types for use with either the Minuit
wrapper or any optimizer that expects a function. All likelihoods have
built in support for SMP when they’re called, and require to be closed
when no longer needed.

	PyPWA.LogLikelihood defines the likelihood, and works with either
the standard log likelihood, the binned log likelihood, or the extended
log likelihood.

	PyPWA.ChiSquared defines the ChiSquared method, supporting both the
binned and standard ChiSquare.

	PyPWA.EmptyLikelihood does no post operation on the final values
except sum the array and return the final sum. This allows for defining
unique likelihoods that have not already been defined, fitting functions
that do not require a likelihood, or using the builtin multi processing
without the weight of a standard likelihood.

	
class PyPWA.LogLikelihood(amplitude, data, monte_carlo=None, binned=None, quality_factor=None, generated_length=1, is_minimizer=True, num_of_processes=2)

	Computes the log likelihood with a given amplitude.

To use the standard log likelihood, you only need to provide data,
If binned and quality factor are not provided, they will default to
1. If you wish to use the Extended Log Likelihood, you must provide
monte_carlo data. The generated length will be set to the length of
the monte_carlo, unless a generated length is provided.

	Parameters

	
	amplitude (AbstractAmplitude) – Either an user defined amplitude, or an amplitude from PyPWA

	data (DataFrame or npy.ndarray) – Data that will be passed directly to the amplitude

	monte_carlo (DataFrame or npy.ndarray, optional) – Data that will be passed to the monte_carlo

	binned (Series or npy.ndarray, optional) – Array with bin values. This won’t be used if monte_carlo is
provided.

	quality_factor (Series or npy.ndarray, optional) – Array with quality factor values

	generated_length (int, optional) – The generated length of values for use with the monte_carlo,
this value will default to the length of monte_carlo

	is_minimizer (bool, optional) – Specify if the final value of the likelihood should be multiplied
by -1. Defaults to True.

	num_of_processes (int, optional) – How many processes to be used to calculate the amplitude. Defaults
to the number of threads available on the machine. If USE_MP is
set to false or this is set to zero, no extra processes will
be spawned

Notes

Standard Log-Likelihood. If not provided, \(Q_f\) and binned will
be set to 1:

\[L = \sum{Q_f \cdot binned \cdot log (Amp(data))}\]

Extended Log-Likelihood. If not provided, the Q_f will be set to 1,
and generated_length will be set to len(monte_carlo)

\[L = \sum{Q_f \cdot log (Amp(data))} - \
 \frac{1}{generated_length} \cdot \sum{Amp(monte_carlo)}\]

	
close()

	Closes the likelihood
This needs to be called after you’re done with the likelihood,
UNLESS, you created the likelihood using the with statement

	
class PyPWA.ChiSquared(amplitude, data, binned=None, event_errors=None, expected_values=None, is_minimizer=True, num_of_processes=2)

	Computes the Chi-Squared Likelihood with a given amplitude.

This likelihood supports two different types of the ChiSquared,
one with binned or one with expected values.

To use the binned ChiSquared, you need to provide data and binned
values, to use the expected values, you need to provide data,
event_errors, and expected_values.

	Parameters

	
	amplitude (AbstractAmplitude) – Either an user defined amplitude, or an amplitude from PyPWA

	data (DataFrame or npy.ndarray) – The data that will be passed directly to the amplitude

	binned (Series or npy.ndarray, optional) – The array of bin values, should be the same length as data

	event_errors (Series or npy.ndarray, optional) – The array of errors, should be the same length as data

	expected_values (Series or npy.ndarray, optional) – The array of expected values, should be the same length as data

	is_minimizer (bool, optional) – Specify if the final value of the likelihood should be multiplied
by -1. Defaults to True.

	num_of_processes (int, optional) – How many processes to be used to calculate the amplitude. Defaults
to the number of threads available on the machine. If USE_MP is
set to false or this is set to zero, no extra processes will
be spawned

	Raises

	ValueError – If binned values or expected/errors are not provided

Notes

Binned ChiSquare:

\[\chi^{2} = \frac{(Amp(data) - binned)^{2}}{binned}\]

Expected values:

\[\chi^{2} = \frac{(Amp(data) - expected)^{2}}{errors}\]

	
close()

	Closes the likelihood
This needs to be called after you’re done with the likelihood,
Unless, you created the likelihood using the with statement

	
class PyPWA.EmptyLikelihood(amplitude, data, num_of_processes=2)

	Provides the multiprocessing benefits of a standard likelihood
without a defined likelihood.

This allows you to include a likelihood into your amplitude or to run
your amplitude without a likelihood entirely.

	
amplitude

	Either an user defined amplitude, or an amplitude from PyPWA

	Type

	AbstractAmplitude

	
data

	The data that will be passed directly to the amplitude

	Type

	DataFrame or npy.ndarray

	
num_of_processes

	How many processes to be used to calculate the amplitude. Defaults
to the number of threads available on the machine. If USE_MP is
set to false or this is set to zero, no extra processes will
be spawned

	Type

	int, optional

	
close()

	Closes the likelihood
This needs to be called after you’re done with the likelihood,
UNLESS, you created the likelihood using the with statement

Fitting

PyPWA supplies a single wrapper around iMinuit’s module. This is a
convenience function to make working with Minuit’s parameters easier.
However, if wanting to use a different fitting function, like Scikit or
Scipy, the likelihoods should work natively with them.

Most optimizers built in Python assume the data is some sort of global
variable, and the function passed to them is just accepting parameters
to fit against. The Likelihoods take advantage of this by wrapping the
data and the defined functions a wrapper that attempts to scale the
function to several processors, while providing function-like capabilities
by taking advantage of Python’s builtin __call__ magic function.

This should allow the likelihoods to work with any optimizer, as long as
they’re expecting a function or callable object, and as long as the
parameters they pass are pickle-able.

	
PyPWA.minuit(settings, likelihood)

	Optimization using iminuit

	Parameters

	
	settings (Dict[str, Any]) – The settings to be passed to iminuit. Look into the documentation
for iminuit for specifics

	likelihood (Likelihood object from likelihoods or single function) –

	Returns

	The minuit object after the fit has been completed.

	Return type

	iminuit.Minuit

Note

See Iminuit’s documentation [https://iminuit.readthedocs.io/]
for more imformation, as it should explain the various options
that can be passed to iminuit, and how to use the resulting object
after a fit has been completed.

 Plotting

Plotting

As an attempt to make plotting in Python easier, we are building a
plotting library that attempts to solve the more specific plotting needs
when working with high energy physics. The first plotting tool we have is
to reproduce ROOT’s LEGO plot, but more will come in the future.

	
PyPWA.make_lego(x_data, y_data, bins=None, cmap='jet', ax=None, elev=10, azim=215)

	Produces a 3D Lego plot, similar to what is produced by ROOT. This is
similar to a 2D Histogram, but treats x and y as x and z, and projects
the occurrences into the y dimension.

	Parameters

	
	x_data (ndarray or Series) – X data for the lego plot

	y_data (ndarray or Series) – Y data for the lego plot

	bins (int, optional) – Number of bins to create when making the lego plot.

	cmap (str or matplotlib.colors.ListedColormap, optional) – cmap to use when creating the lego plot. It takes either a string
of the name for matplotlib, or a matplotlib cmap

	ax (Axes3D, optional) – An axes object to place the lego plot into. The axes must be an
axes that supports 3d projection or it will cause the function
to error.

	elev (int, optional) – Adjusts the elevation of the lego-plot

	azim (int, optional) – Adjusts the azimuth of the resulting image. It’s value is a angle
between 0 and 360 degrees.

	Returns

	The axes object of the plot

	Return type

	Axes3D

Notes

If the number of bins isn’t provided, it’s instead calculated using
one half of Sturge’s Rule rounded up:

\[\lceil (1/2)(1 + 3.322 \cdot log(N_{events})\rceil\]

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | W

A

 	
 	amplitude (PyPWA.EmptyLikelihood attribute)

B

 	
 	bin_by_list() (in module PyPWA)

 	
 	bin_by_range() (in module PyPWA)

 	bin_with_fixed_widths() (in module PyPWA)

C

 	
 	calculate() (PyPWA.FunctionAmplitude method)

 	(PyPWA.NestedFunction method)

 	charge (PyPWA.Particle property)

 	
 	ChiSquared (class in PyPWA)

 	close() (PyPWA.ChiSquared method)

 	(PyPWA.EmptyLikelihood method)

 	(PyPWA.LogLikelihood method)

D

 	
 	data (PyPWA.EmptyLikelihood attribute)

 	DataType (class in PyPWA)

 	
 	display_raw() (PyPWA.Particle method)

 	(PyPWA.ParticlePool method)

E

 	
 	EmptyLikelihood (class in PyPWA)

 	
 	event_count (PyPWA.ParticlePool property)

F

 	
 	FourVector (class in PyPWA)

 	
 	FunctionAmplitude (class in PyPWA)

G

 	
 	get_copy() (PyPWA.Particle method)

 	get_event_mass() (PyPWA.ParticlePool method)

 	get_particles_by_id() (PyPWA.ParticlePool method)

 	get_particles_by_name() (PyPWA.ParticlePool method)

 	
 	get_reader() (in module PyPWA)

 	get_s() (PyPWA.ParticlePool method)

 	get_t() (PyPWA.ParticlePool method)

 	get_t_prime() (PyPWA.ParticlePool method)

 	get_writer() (in module PyPWA)

I

 	
 	id (PyPWA.Particle property)

 	
 	iter_events() (PyPWA.ParticlePool method)

 	iter_particles() (PyPWA.ParticlePool method)

L

 	
 	LogLikelihood (class in PyPWA)

M

 	
 	make_lego() (in module PyPWA)

 	make_rejection_list() (in module PyPWA.simulate)

 	
 	minuit() (in module PyPWA)

 	monte_carlo_simulation() (in module PyPWA)

N

 	
 	name (PyPWA.Particle property)

 	
 	NestedFunction (class in PyPWA)

 	num_of_processes (PyPWA.EmptyLikelihood attribute)

P

 	
 	pandas_to_numpy() (in module PyPWA)

 	Particle (class in PyPWA)

 	
 	particle_count (PyPWA.ParticlePool property)

 	ParticlePool (class in PyPWA)

 	process_user_function() (in module PyPWA.simulate)

R

 	
 	read() (in module PyPWA)

 	(in module PyPWA.cache)

S

 	
 	setup() (PyPWA.FunctionAmplitude method)

 	(PyPWA.NestedFunction method)

 	
 	split() (PyPWA.Particle method)

 	(PyPWA.ParticlePool method)

 	stored (PyPWA.ParticlePool property)

T

 	
 	ThreeVector (class in PyPWA)

 	
 	to_contiguous() (in module PyPWA)

W

 	
 	write() (in module PyPWA)

 	(in module PyPWA.cache)

 Intro to MCMC in PyPWA with the 2D Gauss

Intro to MCMC in PyPWA with the 2D Gauss

In this tutorial we want to show how to use MCMC in PyPWA

Note: Multiproccessing is done automatically when it’s selected. However, if you have some direct C/C++ code dependency in your Function on called in your class’s __init__, you will encounter issues. This is why each object has a setup function- To initialize Fortran and C++ dependencies there.

[1]:

import numpy as np # Vectorization and arrays
import pandas as pd # A powerful data science toolkit
import numexpr as ne # A threaded accelerator for numpy

import PyPWA as pwa
from IPython.display import display

There are 3 different supported ways to define your kernel/amplitude in PyPWA. - Using multiprocessing: Write your kernel using Numpy and include any externally compiled code the setup method. This is the default kernel, and will result in your kernel being deployed in parallel across all threads on the host system. - Using Numexpr to use hardware threads and low level vectorization to further accelerate Numpy. There is some benefit to running Numexpr on less cores than traditional Numpy, but
largely you can treat Numexpr the same as the above. - Using Torch to compute the Kernel. This will allow you to take advantage of Metal on Apple PCs, or CUDA GPUs on Linux machines. However, to utilize CUDA, you must disable Multiprocessing. At this time, CUDA does not support the main process being forked.

[2]:

class Gauss2dAmplitude(pwa.NestedFunction):
 """
 This is a simple 2D Gauss, but built to use PyPWA's builtin
 multiprocessing module. For you, you don't need to worry about thread or
 process management, how to pass data between threads, or any of the other
 hassles that come with multithreading.

 Instead, you just define your class while extending the NestedFunction,
 and when you pass it to the fitter or the simulator, it'll clone your
 class, split your data, and deploy to every processing thread your
 machine has.
 """

 def __init__(self):
 """
 You can override the init function if you need to set parameters
 before the amplitude is passed to the likelihood or simulation
 functions. You can see an example of this with the JPAC amplitude
 included in the other tutorials. However, you must remember
 to always call the `super` function if you do this.
 """
 super(Gauss2dAmplitude, self).__init__()

 def setup(self, array):
 """
 This function is where your data is passes too. Here you can also
 load any C or Fortran external libraries that typically would not
 support being packaged in Python's object pickles.
 """
 self.__x = array["x"]
 self.__y = array["y"]

 def calculate(self, params):
 """
 This function receives the parameters from the minimizer, and
 returns the values from there. Only the amplitude values should
 be calculated here. The likelihood will be calculated elsewhere.
 """
 scaling = 1 / (params["A2"] * params["A4"])
 left = ((self.__x - params["A1"])**2)/(params["A2"]**2)
 right = ((self.__y - params["A3"])**2)/(params["A4"]**2)
 return scaling * np.exp(-(left + right))

[3]:

class NeGauss2dAmplitude(pwa.NestedFunction):
 """
 This is the same Gauss as above, but instead of using raw numpy, it
 uses numexpr, a hyper vectorized, multithreading, numerical package that
 should accelerate the calculation of your data.

 USE_MP defaults to True, but you should consider setting it to false.
 Numexpr will do some partial multithreading on its own for its
 calculations, however any part of your algorithm that is defined outside
 Numexpr will not benefit from Numexpr. Due to this, there is an optimum
 number of threads for amplitudes with Numexpr that range from 2 threads
 to around 80% of the system threads. A good starting point is around
 50% of the CPU threads available.
 """

 USE_MP = False

 def setup(self, array):
 self.__data = array

 def calculate(self, params):
 return ne.evaluate(
 "(1/(a2*a4)) * exp(-((((x-a1)**2)/(a2**2))+(((y-a3)**2)/(a4**2))))",
 local_dict={
 "a1": params["A1"], "a2": params["A2"],
 "a3": params["A3"], "a4": params["A4"],
 "x": self.__data["x"], "y": self.__data["y"]
 }
)

[4]:

import torch as tc

class TorchGauss2dAmplitude(pwa.NestedFunction):
 """
 Finally, this is the Torch version of the Gauss2D.

 To utilize Torch, the USE_TORCH flag must be set to True, or the
 likelihood will assume that the results will be in standard Numpy
 arrays, and not Torch Tensors.

 Torch affords us some features that Numpy does not. Specifically,
 support for both Apple's Metal Acceleration, and CUDA Acceleration.
 For Apple's Metal, there is no work required further than defining
 your amplitude in Torch due to the shared memory on Apple systems.
 To utilize CUDA, however, you must move the data to the GPU before
 the GPU can accelerate the operations. Because of the nature of
 CUDA, CUDA and Multiprocessing are not compatible, so you must
 disable multiprocessing when using CUDA.

 WARNING You **MUST** set USE_MP to False if you are using
 CUDA as a Torch Device!
 """

 USE_TORCH = True
 USE_MP = False

 # device is not a flag for Amplitude, but we use it track the current
 # device that the amplitude should run on.
 device = ... # type: tc.device

 def setup(self, array):
 # We want to always set the current device. It also helps to be able
 # to toggle GPU on and off for the entire amplitude using the USE_MP,
 # flag since the flag can be set after initialization.
 if self.USE_MP:
 self.device = tc.device("cpu")
 else:
 self.device = tc.device("cuda:0")

 # Since the data is in Pandas, we need to map it to Numpy first
 narray = pwa.pandas_to_numpy(array)

 self.__x = tc.from_numpy(narray["x"]).to(self.device)
 self.__y = tc.from_numpy(narray["y"]).to(self.device)

 def calculate(self, params):
 scaling = 1 / (params["A2"] * params["A4"])
 left = ((self.__x - params["A1"])**2)/(params["A2"]**2)
 right = ((self.__y - params["A3"])**2)/(params["A4"]**2)
 return scaling * tc.exp(-(left + right))

Generate data

Check if it is already cached first

[5]:

valid_cache, binned_flat = pwa.cache.read("flat_data")
if not valid_cache:
 flat_data = pd.DataFrame()
 flat_data["x"] = np.random.rand(10_000_000) * 20
 flat_data["y"] = np.random.rand(10_000_000) * 20
 flat_data["binning"] = np.random.rand(10_000_000) * 20
 binned_flat = pwa.bin_with_fixed_widths(flat_data, "binning", 1_000_000)
 pwa.cache.write("flat_data", binned_flat)

Simulation with bins

Simulation can be run as a whole system, you simply provide the function and data, and it’ll return the masked values, or you can run the two steps independently, with the first step returning the intensities, and the second returning the masks. When your working with a single dataset, running it as a single step make sense, however if you bin your data, then running it as two steps is better so that all bins are masked against the same max value of the intensity.

	pwa.simulate.process_user_function takes all the same arguments as pwa.monte_carlo_simulation so it can be a drop in replacement. The difference is that this function will return the final values for the user’s function and the max value.

	pwa.simulate.make_rejection_list takes the final values and either a single max value, or a list or array of max values, and it’ll use the largest max value. This function will return the same value as pwa.monte_carlo_simulation

Below, I iterate over the bins and produce the final values and max value for each bin and store them in their own lists.

[6]:

simulation_params = {
 "A1": 10, "A2": 3,
 "A3": 10, "A4": 3
}

final_values = []
max_values = []
for fixed_bin in binned_flat:
 final, m = pwa.simulate.process_user_function(
 TorchGauss2dAmplitude(), fixed_bin, simulation_params
)
 final_values.append(final)
 max_values.append(m)

pwa.cache.write("final_values", max_values)

After the final values have been produced, I use pwa.simulate.make_rejection_list to reject events from each bin, and then store the new carved results in a fresh list.

[7]:

rejected_bins = []
masked_final_values = []
for final_value, bin_data in zip(final_values, binned_flat):
 rejection = pwa.simulate.make_rejection_list(final_value, max_values)
 rejected_bins.append(bin_data[rejection])
 masked_final_values.append(final_value[rejection])

pwa.cache.write("fitting_bins", rejected_bins, True)
pwa.cache.write("kept_final_values", masked_final_values, True)

[8]:

for index, simulated_bin in enumerate(rejected_bins):
 print(
 f"Bin {index+1}'s length is {len(simulated_bin)}, "
 f"{(len(simulated_bin) / 1_000_000) * 100:.2f}% events were kept"
)

Bin 1's length is 70474, 7.05% events were kept
Bin 2's length is 70612, 7.06% events were kept
Bin 3's length is 70866, 7.09% events were kept
Bin 4's length is 70533, 7.05% events were kept
Bin 5's length is 70888, 7.09% events were kept
Bin 6's length is 70957, 7.10% events were kept
Bin 7's length is 71084, 7.11% events were kept
Bin 8's length is 70362, 7.04% events were kept
Bin 9's length is 71067, 7.11% events were kept
Bin 10's length is 71151, 7.12% events were kept

MCMC

Instead of using imuit like in the other 2Dgauss example this time we want to explore the parameterspace using Markov Chain Monte Carlo through the emcee package. When doing this it is important to set the is_minimizer flag to False in the LogLikelihood function, since emcee tries to maximize the likelihood.

[9]:

fitting_settings = {
 "A1": 1.0, "A2": 1.0,
 "A3": 1.0, "A4": 1.0,
}

Then below, we can simply fit those values.

[10]:

import emcee
import multiprocessing as mp
Even though we're using Numexpr, I do want to take advantage of both
multiprocessing and Numexpr's low level optimizations. So by selecting
a small number of processes with Numexpr, you still get an overall
speedup over either Numexpr or regular multiprocessing
NeGauss2dAmplitude.USE_MP = True

cpu_final_values= []
numwalker=10
numsteps=5000

for simulated_bin in rejected_bins:
 with pwa.LogLikelihood(
 NeGauss2dAmplitude(), simulated_bin,
 num_of_processes=int(mp.cpu_count() / 2), is_minimizer=False
) as likelihood:

 startpars = np.full((numwalker,len(fitting_settings)),list(fitting_settings.values()))
 parnames = list(fitting_settings.keys())
 cov = 1
 optimizer = pwa.mcmc(parnames, likelihood,
 nsteps = numsteps,
 startpars = startpars,
 parlimits = [(0.1,20),(0.1,20),(0.1,20),(0.1,20)],
 nwalker = numwalker,
 emceemoves=emcee.moves.GaussianMove(cov,'random')
)
 cpu_final_values.append(optimizer)
 break # just one bin

100%|██| 5000/5000 [02:45<00:00, 30.13it/s]

[11]:

gpu_final_values = []
numwalker=10
numsteps=5000

for simulated_bin in rejected_bins:
 with pwa.LogLikelihood(TorchGauss2dAmplitude(), simulated_bin, is_minimizer=False) as likelihood:

 startpars = np.full((numwalker,len(fitting_settings)),list(fitting_settings.values()))
 parnames = list(fitting_settings.keys())
 cov = 0.3
 optimizer = pwa.mcmc(parnames, likelihood,
 nsteps = numsteps,
 startpars = startpars,
 parlimits = [(0.1,20),(0.1,20),(0.1,20),(0.1,20)],
 nwalker = numwalker,
 emceemoves = emcee.moves.GaussianMove(cov,'random')
)

 gpu_final_values.append(optimizer)
 break # just one bin

100%|███| 5000/5000 [00:29<00:00, 169.53it/s]

Draw chains and inspect results of MCMC

Do this for the cpu and gpu results and compare

[14]:

import matplotlib.pyplot as plt
import corner

burnin=0

for index, dbin in enumerate(rejected_bins):
 print(f"Show results for bin #{index}")

 parnames = list(fitting_settings.keys())

 samples = cpu_final_values[index].get_chain(discard=burnin)
 nlls = cpu_final_values[index].get_log_prob(discard=burnin)

 numsteps = len(samples)
 numpars = samples.shape[2]
 fig, axes = plt.subplots(len(parnames)+1, figsize=(10, 20), sharex=True)
 for i in range(len(parnames)):
 ax = axes[i]
 ax.plot(samples[:,:,i])
 ax.set_ylabel(parnames[i])
 ax.set_xlim(0, numsteps)
 ax = axes[len(parnames)]
 ax.plot(nlls)
 ax.set_ylabel("nll")
 ax.set_xlim(0, numsteps)

 axes[-1].set_xlabel("step number");
 fig.show()

 samples = cpu_final_values[index].get_chain(discard=burnin)
 fig2, axes2 = plt.subplots(len(parnames), figsize=(5, 20), sharex=False)
 for i in range(len(parnames)):
 ax = axes2[i]
 ax.hist(samples[:,:,i], 100,histtype='barstacked')
 ax.set_ylabel(parnames[i])
 fig2.show()

 flatsample = cpu_final_values[index].get_chain(discard=burnin,flat=True)
 varrange = []
 for i in range(len(parnames)):
 varrange.append((flatsample[:,i].min(),flatsample[:,i].max()))
 fig3 = corner.corner(flatsample,
 color='royalblue',
 bins=50,
 range=varrange,
 labels=parnames,
 fill_contours=True,
 truth_color='red',
 label_kwargs={'fontsize':20, 'labelpad':20},
 hist_kwargs = {'histtype':'stepfilled','alpha':1})
 fig3.show()

 break #do this only for one bin

Show results for bin #0

/tmp/ipykernel_200504/2796533490.py:28: UserWarning: Matplotlib is currently using module://matplotlib_inline.backend_inline, which is a non-GUI backend, so cannot show the figure.
 fig.show()
/tmp/ipykernel_200504/2796533490.py:36: UserWarning: Matplotlib is currently using module://matplotlib_inline.backend_inline, which is a non-GUI backend, so cannot show the figure.
 fig2.show()
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
/tmp/ipykernel_200504/2796533490.py:51: UserWarning: Matplotlib is currently using module://matplotlib_inline.backend_inline, which is a non-GUI backend, so cannot show the figure.
 fig3.show()

[image: ../_images/examples_2Dgauss_mcmc_20_2.png]

[image: ../_images/examples_2Dgauss_mcmc_20_3.png]

[image: ../_images/examples_2Dgauss_mcmc_20_4.png]

[15]:

for index, dbin in enumerate(rejected_bins):
 print(f"Show results for bin #{index}")

 parnames = list(fitting_settings.keys())

 samples = gpu_final_values[index].get_chain(discard=burnin)
 nlls = gpu_final_values[index].get_log_prob(discard=burnin)

 numsteps = len(samples)
 numpars = samples.shape[2]
 fig, axes = plt.subplots(len(parnames)+1, figsize=(10, 20), sharex=True)
 for i in range(len(parnames)):
 ax = axes[i]
 ax.plot(samples[:,:,i])
 ax.set_ylabel(parnames[i])
 ax.set_xlim(0, numsteps)
 ax = axes[len(parnames)]
 ax.plot(nlls)
 ax.set_ylabel("nll")
 ax.set_xlim(0, numsteps)

 axes[-1].set_xlabel("step number");
 fig.show()

 samples = gpu_final_values[index].get_chain(discard=burnin)
 fig2, axes2 = plt.subplots(len(parnames), figsize=(5, 20), sharex=False)
 for i in range(len(parnames)):
 ax = axes2[i]
 ax.hist(samples[:,:,i], 100,histtype='barstacked')
 ax.set_ylabel(parnames[i])
 fig2.show()

 flatsample = gpu_final_values[index].get_chain(discard=burnin,flat=True)
 varrange = []
 for i in range(len(parnames)):
 varrange.append((flatsample[:,i].min(),flatsample[:,i].max()))
 fig3 = corner.corner(flatsample,
 color='royalblue',
 bins=50,
 range=varrange,
 labels=parnames,
 fill_contours=True,
 truth_color='red',
 label_kwargs={'fontsize':20, 'labelpad':20},
 hist_kwargs = {'histtype':'stepfilled','alpha':1})
 fig3.show()

 break #do this only for one bin

Show results for bin #0

/tmp/ipykernel_200504/1217592886.py:23: UserWarning: Matplotlib is currently using module://matplotlib_inline.backend_inline, which is a non-GUI backend, so cannot show the figure.
 fig.show()
/tmp/ipykernel_200504/1217592886.py:31: UserWarning: Matplotlib is currently using module://matplotlib_inline.backend_inline, which is a non-GUI backend, so cannot show the figure.
 fig2.show()
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
/tmp/ipykernel_200504/1217592886.py:46: UserWarning: Matplotlib is currently using module://matplotlib_inline.backend_inline, which is a non-GUI backend, so cannot show the figure.
 fig3.show()

[image: ../_images/examples_2Dgauss_mcmc_21_2.png]

[image: ../_images/examples_2Dgauss_mcmc_21_3.png]

[image: ../_images/examples_2Dgauss_mcmc_21_4.png]

[]:

 <no title>

[1]:

import numpy as np # Vectorization and arrays
import torch as tc # PyTorch, used for Tensor operations

import PyPWA as pwa

/home/mark/.anaconda3_install/envs/PyPWA/lib/python3.10/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
 from .autonotebook import tqdm as notebook_tqdm

[2]:

class NewMinuitGauss2D(pwa.NestedFunction):
 """
 Minuit 2.0 introduced a new way of working with parameters,
 by passing the values to the calculate function as a numpy array
 instead of has a dictionary of values.

 Using values this way is a little more obtuse, but if you have
 reached the point in your analysis where you are trying to
 squeeze out as much performance from your amplitude as possible,
 swapping to Minuit's array parameters could net you a small
 performance boost at the cost of transparency.
 """

 USE_MP = False
 USE_TORCH = True
 device = ... # type: tc.device

 def setup(self, array):
 # This example uses Numpy arrays, not Pandas dataframes,
 # so we don't need to convert the values here.

 self.device = tc.device(f"cuda:{self.THREAD}" if self.THREAD >= 0 else "cpu")

 self.__x = tc.from_numpy(array["x"]).to(self.device)
 self.__y = tc.from_numpy(array["y"]).to(self.device)

 def calculate(self, array):
 """
 The old params followed a:
 {"A1": float, "A2": float, "A3": float, "A4": float}
 format.

 The new params are:
 [float, float, float, float]
 which corresponds to:
 [A1, A2, A3, A4]

 """
 scaling = 1 / (array[1] * array[3])
 left = ((self.__x - array[0])**2)/(array[1]**2)
 right = ((self.__y - array[2])**2)/(array[3]**2)
 return scaling * tc.exp(-(left + right))

[3]:

Create basic data with structured numpy arrays
flat_data = np.empty(250_000_000, dtype=[('x', 'f8'), ('y', 'f8')])
flat_data["x"] = np.random.rand(250_000_000) * 20
flat_data["y"] = np.random.rand(250_000_000) * 20

[4]:

simulation_params = np.array([10, 3, 10, 3])
rejection = pwa.monte_carlo_simulation(
 NewMinuitGauss2D(), flat_data, simulation_params
)
final = flat_data[rejection]

Simulation uses almost 20Gb of VRAM!
We really do want to release some of that VRAM back
tc.cuda.empty_cache()

[5]:

print(
 f"Result length is {len(final)}, "
 f"{(len(final) / 500_000_000) * 100:.2f}% events were kept, "
 f"which is {final.nbytes / 1048576: .2f}Mb in size."
)

Result length is 17669347, 3.53% events were kept, which is 269.61Mb in size.

[6]:

with pwa.LogLikelihood(NewMinuitGauss2D(), final) as likelihood:
 optimizer = pwa.minuit(np.array([1, 1, 1, 1], float), likelihood)

 for param in [0, 2]:
 optimizer.limits[param] = (.1, None)

 for param in [1, 3]:
 optimizer.limits[param] = (1, None)

 result = optimizer.migrad()
result

[6]:

 	 Migrad

 	 FCN = 5.649e+07
 	 Nfcn = 213

 	 EDM = 4.99e-05 (Goal: 0.0001)
 	

 	 Valid Minimum
 	 No Parameters at limit

 	 Below EDM threshold (goal x 10)
 	 Below call limit

 	 Covariance
 	 Hesse ok
 	 Accurate
 	 Pos. def.
 	 Not forced

 	
 	 Name
 	 Value
 	 Hesse Error
 	 Minos Error-
 	 Minos Error+
 	 Limit-
 	 Limit+
 	 Fixed

 	 0
 	 x0
 	 9.9997
 	 0.0005
 	
 	
 	 0.1
 	
 	

 	 1
 	 x1
 	 3.0000
 	 0.0005
 	
 	
 	 1
 	
 	

 	 2
 	 x2
 	 9.9994
 	 0.0005
 	
 	
 	 0.1
 	
 	

 	 3
 	 x3
 	 3.0002
 	 0.0005
 	
 	
 	 1
 	
 	

 	
 	 x0
 	 x1
 	 x2
 	 x3

 	 x0
 	 2.55e-07
 	 2.22e-10
 	 7.05e-17
 	 -6.11e-20

 	 x1
 	 2.22e-10
 	 2.55e-07
 	 7.04e-17
 	 -1.41e-16

 	 x2
 	 7.05e-17
 	 7.04e-17
 	 2.55e-07
 	 2.23e-10

 	 x3
 	 -6.11e-20
 	 -1.41e-16
 	 2.23e-10
 	 2.55e-07

[6]:

_static/plus.png

_images/examples_demo_JPAC_fit_30_0.png
120000 n

4= 100
100000

20000

0000

0000

20000

Teeesesevreveeee

os 10 12 14 16 18

_images/examples_demo_JPAC_fit_30_1.png
eLm
8- 10

15

00
000
2000
1000

ax

_images/examples_2Dgauss_mcmc_21_4.png
A2

A3

Ad

_images/examples_demo_JPAC_fit_24_0.png
120000
100000
0000
6000
40000
20000

_images/examples_demo_JPAC_fit_30_4.png
eLm

-8- 21
~

15

7500
5000
2500

o

20000
17500
15000
12500
10000

_images/examples_demo_JPAC_fit_30_5.png
eLm

15 18

14

7500
5000
2500

0

17500
15000
12500
10000

_images/examples_demo_JPAC_fit_30_2.png
eLm
-e-

N
beeees’ we-s-e-e
16

12

eeeob

2500

2000

1500

1000

500

o

15

s

10

08

_images/examples_demo_JPAC_fit_30_3.png
20000

17500

15000

12500

10000

7500

5000

2500

eLm
8- 120

15

_images/examples_demo_JPAC_fit_32_0.png
120000 t

100000

20000

0000

0000

mol \ e
o{ $30s0-443 ..‘\qu

os 10 12 14 16 18

_images/examples_demo_JPAC_fit_36_1.png
10

08

08

04

02

00

06

08

10

12

14

15

15

20

_images/examples_2Dgauss_mcmc_20_4.png
A2

A3

Ad

s

LA

2w
A2

_images/examples_2Dgauss_mcmc_21_2.png
10

AL

4

7

1

1

W
!
.
|

1000 2000 3000 4000 5000
step number

_images/examples_2Dgauss_mcmc_20_2.png
10

AL
o

4

1

1

W’
.
T
[L

1000 2000 3000 4000 5000
step number

_images/examples_2Dgauss_mcmc_20_3.png
AL

M

50000

40000

30000

20000

10000

40000

30000

20000

10000

50000

40000

30000

20000

10000

50000

40000

30000

20000

10000

10

_images/examples_2Dgauss_mcmc_21_3.png
AL

M

50000

40000

30000

20000

10000

40000

30000

20000

10000

40000

30000

20000

10000

40000

30000

20000

10000

10

[RES

_images/examples_demo_JPAC_fit_39_1.png

nav.xhtml

 Table of Contents

 		
 PyPWA

_images/examples_demo_JPAC_pre_32_0.png
Linear normalization Power law (y=

] 2]

Power law (y=05) Power law (y:

_images/examples_demo_JPAC_pre_34_0.png
Linear normalization Power law (y=

10 15 10 15

Power law (y=05) Power law (y:

_images/examples_demo_JPAC_pre_26_0.png
)

010

o008

008

004

002

_images/examples_demo_JPAC_pre_30_1.png

_images/examples_demo_JPAC_pre_40_0.png
Linear normalization Power law (y=0.8)

15 15

Power law (Power law (

_images/examples_demo_JPAC_pre_42_0.png
Power law (y=03)

_images/examples_demo_JPAC_pre_36_0.png
Linear normalization Power law (y=0.8)

15 15

Power law (Power law (

_images/examples_demo_JPAC_pre_38_0.png

_images/examples_demo_JPAC_sim_24_1.png
2000

1750

1500

1250

1000

750
500
0

20

18

1%

1

12

10

o8

06

_images/examples_demo_JPAC_sim_28_1.png
5000 et

.
0
5000

.

10000

15000 o°

.

o6 08 10 12 14 16 18 20

_images/examples_demo_JPAC_sim_30_0.png
Linear normalization Power law (y=

2 4 2

Power law (y=05) Power law (y:

_images/examples_demo_JPAC_sim_36_0.png

_images/examples_demo_JPAC_sim_38_0.png
Linear normalization Power law (y=0.8)

2 2

Power law (Power law (

_images/examples_demo_JPAC_sim_32_0.png
Linear normalization Power law (y=

2 2

Power law (y=05) Power law (y

_images/examples_demo_JPAC_sim_34_0.png
Linear normalization Power law (y=0.8)

10 15 20 10 15

Power law (' Power law (y

075 100 125 150 175 200

_images/examples_demo_JPAC_sim_50_0.png
14

12

10

08

06

04

02

00

o Ho00
o H100

06

08

10

12

1a

16

15

20

_images/examples_demo_JPAC_sim_50_1.png
0175

0150

0125

0100

0075

0050

0025

0000

0025

o How
o H110

06

08

10

12

1a

16

15

20

_images/examples_demo_JPAC_sim_40_0.png
Linear normalization Power law (y=0.8)

_images/examples_demo_JPAC_sim_48_1.png
14

12

10

08

06

04

02

00

06